Advertisement

Enumération des 2-arbres k-gonaux

  • Gilbert Labelle
  • Cédric Lamathe
  • Pierre Leroux
Conference paper
Part of the Trends in Mathematics book series (TM)

Résumé

In this paper1, we generalize 2-trees by replacing triangles by quadrilaterals, pentagons or k-sided polygons (k-gons), where k ≥ 3 is given. This generalization, to k-gonal 2-trees, is natural and is closely related, in the planar case, to some specializations of the cell-growth problem. Our goal is the enumeration, labelled and unlabelled, of k-gonal 2-trees according to the number n of k-gons. Wegive explicit formulas in the labelled case, and, in the unlabelled case, recursive and asymptotic formulas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Bergeron, G. Labelle, and P. Leroux Combinatorial Species and tree-like structures Encyclopedia of Mathematics and it’s Applications, vol. 67, Cambridge University Press, (1998).zbMATHGoogle Scholar
  2. [2]
    T. Fowler, I. Gessel, G. Labelle, P. Leroux Specifying 2-trees Proceedings FPSAC’01, Moscou, 26–30 juin 2000, 202–213.Google Scholar
  3. [3]
    T. Fowler, I. Gessel, G. Labelle, P. Leroux The Specification of 2-trees Advances in Applied Mathematics, 28, 145–168, (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    F. Harary and E. Palmer Graphical Enumeration Academic Press, New York, (1973).zbMATHGoogle Scholar
  5. [5]
    F. Harary, E. Palmer and R. Read On the cell-growth problem for arbitrary polygons Discrete Mathematics, 11, 371–389, (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    INRIA Encyclopedia of combinatorial structures. http://algo.inria.fr/encyclopedia/index.html.
  7. [7]
    G. Labelle Some new computational methods in the theory of species Combinatoire énumérative, Proceedings, Montréal, Québec, Lectures Notes in Mathematics, vol. 1234, Springer-Verlag, New-York/Berlin, 160–176, (1985).Google Scholar
  8. [8]
    G. Labelle, C. Lamathe and P. Leroux Développement moléculaire de l’espèce des 2-arbres planaires Proceedings GASCom01, 41–46, (2001).Google Scholar
  9. [9]
    G. Labelle, C. Lamathe and P. Leroux A classification of plane and planar 2-trees preprint CO/0202052, submitted.Google Scholar
  10. [10]
    R. Otter The number of trees Annals of Mathematics, 49, 583–599, (1948).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    N. J. A. Sloane and S. Plouffe The Encyclopedia of Integer Sequences Academic Press, San Diego, (1995)zbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Gilbert Labelle
    • 1
  • Cédric Lamathe
    • 1
  • Pierre Leroux
    • 1
  1. 1.LaCIMUniversité du Québec àMontréalMontréalCanada

Personalised recommendations