Advertisement

Bijective Construction of Equivalent Eco-systems

  • Srečko Brlek
  • Enrica Duchi
  • Elisa Pergola
  • Renzo Pinzani
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

First we explicit an infinite family of equivalent succession rules parametrized by a positive integer α, for which two specializations lead to the equivalence of rules defining the Catalan and Schröder numbers. Then, from an ECO-system for Dyck paths easily derive an ECO-system for complete binary trees y using a widely known bijection between these objects. We also give a similar construction in the less easy case of Schröder paths and Schröder trees which generalizes the previous one.

Keywords

Lattice Path Easy Case Combinatorial Object Succession Rule Type Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, (2002)Generating functions for generating treesDiscrete Mathematics, 246 (1–3) 29–55.zbMATHCrossRefGoogle Scholar
  2. [2]
    E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, (1999)ECO: a methodology for the Enumeration of Combinatorial ObjectsJournal of Difference Equations and Applications, Vol.5, 435–490.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Bousquet-Mélou, M. Petkovgek, (2000)Linear Recurrences with Constant Coefficients: the Multivariate Case, Discrete Mathematics225 (1–3)51–75.zbMATHGoogle Scholar
  4. [4]
    F. R. K. Chung, R. L. Graham, V. E. Hoggatt, M. Kleimann, (1978)The number of Baxter permutations, Journal of Combinatorial Theory Ser. A24, 382–394.zbMATHCrossRefGoogle Scholar
  5. [5]
    S. Corteel, (2000) Séries génératrices exponentielles pour les eco-systèmes signés, in D. Krob, A.A. Mikhalev, A.V. Mikhalev (Eds.)Proceedings of the 12-th International Conference on Formal Power Series and Algebraic Combinatorics Moscow RussiaSpringer, 655–666.Google Scholar
  6. [6]
    S. Gire, (1993)Arbres permutations à motifs exclus et cartes planaires: quelques problèmes algorithmiques et combinatoiresThèse de l’université de Bordeaux I.Google Scholar
  7. [7]
    O. Guibert, (1995)Combinatoire des permutations à motifs exclus en liaison avec mots cartes planaires et tableaux de YoungThèse de l’université de Bordeaux I.Google Scholar
  8. [8]
    J.G. Penaud, E. Pergola, R. Pinzani, O. Roques, (2001)Chemins de Schröder et hiérarchies aléatoires, Theoretical Computer Science255, 345–361.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. Pergola, R. Pinzani, S. Rinaldi, (2000)A set of well-defined operations on succession rulesProceedings of MCS, Versailles,l, 141–152.Google Scholar
  10. [10]
    R. P. Stanley, (1986)Enumerative Combinatorics Vol. IWadworth & Brooks/Cole, Monterey, Cal.Google Scholar
  11. [11]
    R. A. Sulanke, (2000)Moments of Generalized Motzkin Paths, J. of Integer SequencesVol. 3, article 00.1.1.Google Scholar
  12. [12]
    J. West, (1995)Generating trees and the Catalan and Schröder numbers, Discrete Mathematics146, 247–262.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Srečko Brlek
    • 1
  • Enrica Duchi
    • 2
  • Elisa Pergola
    • 2
  • Renzo Pinzani
    • 2
  1. 1.LaCIMUniversité du Québec à MontréalCentre-Ville, Montréal (QC)Canada
  2. 2.Dipartimento di Sistemi e InformaticaFirenzeItaly

Personalised recommendations