Advertisement

A Cooperative Approach to Rényi’s Parking Problem on the Circle

  • Thierry Huillet
  • Anna Porzio
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

A cooperative approach to Rényi ‘s parking problem is investigated as a circle covering problem. In this approach, the jamming constant is log 2.

Keywords

Space Filling Cooperative Approach Sequential Adsorption Binomial Identity Random Sequential Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    D.A. Darling, (1953) On a class of problems related to the random division of an interval. Ann. Math. Statistics, 24, 239–253.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.W. Evans, (1993) Random and cooperative sequential adsorption. Rev. Mod. Physics, 65(4), 1281–1329.CrossRefGoogle Scholar
  3. [3]
    L. Flatto, A.G. Konheim, (1962) The random division of an interval and the random covering of a circle. SIAM Review, 4, 211–222.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    P.C. Hemmer, (1989) The random parking problem. J. Stat. Phys., 57(3/4), 865–869.MathSciNetCrossRefGoogle Scholar
  5. [5]
    L. Holst, (1983) A note on random arcs on the circle. Probability and Mathematical Statistics. Essays in honour of Carl—Gustav Esseen. Ed. by Allan Gut and Lars Holst, Uppsala, 40–45.Google Scholar
  6. [6]
    M. Penrose, (2001) Random parking, sequential adsorption, and the jamming limit. Comm. Math. Phys., 218(1), 153–176.MathSciNetzbMATHGoogle Scholar
  7. [7]
    R. Pyke, (1965) Spacings (With discussion). J. Roy. Statist. Soc. Ser. B, 27, 395–449.MathSciNetzbMATHGoogle Scholar
  8. [8]
    A. Rényi, (1958) On a one-dimensional problem concerning random space filling. Magyar Tud. Akad. Mat. Kutato Int. Kozl, 3(1/2), 109–127.zbMATHGoogle Scholar
  9. [9]
    A.F. Siegel, (1978) Random arcs on the circle. J. Appl. Prob., 15, 774–789.zbMATHCrossRefGoogle Scholar
  10. [10]
    F.W. Steutel, (1967) Random division of an interval. Statistica Neerlandica, 21, 231–244.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    W.L. Stevens, (1939) Solution to a geometrical problem in probability. Ann. Eugenics, 9, 315–320.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Thierry Huillet
    • 1
  • Anna Porzio
    • 2
  1. 1.Laboratorie de Physique Théorique et Modélisation CNRS-ESA 8089Université de Cergy-PontoiseNeuville sur OiseFrance
  2. 2.LAGAUniversité Paris XIII, Institut Galilée 93430 Villetaneuse and Centre de Physique ThéoriquePalaiseauFrance

Personalised recommendations