Advertisement

On the Profile of Random Forests

  • Bernhard Gittenberger
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

An approach via generating functions is used to derive multivariate asymptotic distributions for the number of nodes in strata of random forests. For a certain range for the strata numbers we obtain a weak limit theorem to Brownian motion as well. Moreover, a moment convergence theorem for the width of random forests is derived.

Keywords

Random Forest Random Tree Parking Function Total Progeny Watson Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Billingsley, (1968) Convergence of Probability Measures John Wiley & Sons, New York.zbMATHGoogle Scholar
  2. [2]
    P. Chassaing and G. Louchard, (2001) Reflected Brownian bridge area conditioned on its local time at the origin submitted, http://www.ulb.ac.be/di/mcs/louchard/di/mcs/louchardGoogle Scholar
  3. [3]
    P. Chassaing and J.-F. Marckert, (2001) Parking functions empirical processes and the width of rooted labeled trees Electronic J. Combinatorics 8(1), R14.MathSciNetGoogle Scholar
  4. [4]
    I. A. Cheplyukova, (1997) Limit distributions for the number of vertices in layers of a random forest Diskret. Mat. 9, No. 4, 150–157.MathSciNetGoogle Scholar
  5. [5]
    L. Comtet, (1974) Advanced Combinatorics Reidel, Dordrecht, Netherlands.CrossRefGoogle Scholar
  6. [6]
    M. Drmota and B. Gittenberger, (1997) On the profile of random trees Random Structures and Algorithms 10, 421–451.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. Drmota and B. Gittenberger, (1999) The width of Galton-Watson trees submitted, http://www.geometrie.tuwien.ac.at/drmota/width.ps.gz/drmota/width.ps.gz Google Scholar
  8. [8]
    M. Drmota and J. F. Marckert, (2001) Reinforced weak convergence of stochastic processes submitted, seehttp://www.geometrie.tuwien.ac.at/drmota/reinf.ps.gz/drmota/reinf.ps.gz.Google Scholar
  9. [9]
    M. Drmota and M. Soria, (1995) Marking in combinatorial constructions: generating functions and limiting distributions Theoretical Comp. Science 144, 67–99.Google Scholar
  10. [10]
    I. A. Egorova, (1997) The distribution of vertices in strata of plane planted forests in Probabilistic methods in discrete mathematics (Petrozavodsk, 1996), 179–188, VSP, Utrecht.Google Scholar
  11. [11]
    P. Flajolet and A. M. Odlyzko, (1989) Random mapping statistics in Advances in Cryptology (1990), J.-J. Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes in Computer Science, Springer Verlag, pp. 329–354. Proceedings of Eurocrypt ‘89, Houtalen, Belgium.Google Scholar
  12. [12]
    P. Flajolet, P. Poblete, and A. Viola, (1998) On the analysis of linear probing hashing Algorithmica 22, 490–515.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    P. Flajolet and A. M. Odlyzko, (1990) Singularity analysis of generating functions SIAM J. on Discrete Math. 3, No. 2, 216–240.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    P. Flajolet and J. S. Vitter, (1990) Average-Case Analysis of Algorithms and Data Structures in Handbook of Theoretical Computer Science J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, ch. 9, pp. 431–524.Google Scholar
  15. [15]
    B. Gittenberger, (1998) Convergence of branching processes to the local time of a Bessel process Random Structures and Algorithms 13, 423–438.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    B. Gittenberger, (1999) On the contour of random trees SIAM J. Discrete Math. 12, No. 4, 434–458.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    S. Janson, (2001) Asymptotic distributions for the cost of linear probing hashing, Random Structures and Algorithms, to appearhttp://www.math.uu.se/svante/papers/.Google Scholar
  18. [18]
    I. Karatzas and S. E. Shreve, (1988) Brownian Motion and Stochastic Calculus Springer, New York.zbMATHCrossRefGoogle Scholar
  19. [19]
    V. F. Kolchin, (1986) Random Mappings Optimization Software, New York.zbMATHGoogle Scholar
  20. [20]
    A. Meir and J. W. Moon, (1978) On the altitude of nodes in random trees Canadian Journal of Mathematics 30, 997–1015.Google Scholar
  21. [21]
    Yu. L. Pavlov, (1983) Limit distributions of the height of a random forest Theory Probab. Appl. 28, 471–480.CrossRefGoogle Scholar
  22. [22]
    Yu. L. Pavlov, (1988) Distributions of the number of vertices in strata of a random forest Theory Probab. Appl. 33, 96–104.zbMATHCrossRefGoogle Scholar
  23. [23]
    Yu. L. Pavlov, (1994) Limit distributions of the height of a random forest consisting of plane rooted trees Discr. Math. Appl. 4, 73–88, (translated from Diskret. Mat. 6, 73–88, 1994).Google Scholar
  24. [24]
    Yu. L. Pavlov, (1994) Asymptotic behavior of the height of a random forest (Russian), A collection of papers, No. 1, (Russian), 4–17, 139, Ross. Akad. Nauk, Karel. Nauchn. Tsentr, Petrozavodsk, 1994.Google Scholar
  25. [25]
    Yu. L. Pavlov, (1997) Random forests in Probabilistic methods in discrete mathematics (Petrozavodsk 1996) 11–18, VSP, Utrecht.Google Scholar
  26. [26]
    Yu. L. Pavlov and I. A. Cheplyukova, (1999) Limit distributions of the number of vertices in strata of a simply generated forest Discr. Math. Appl. 9, 137154, (translated from Diskret. Mat. 11, 97–112, 1999).Google Scholar
  27. [27]
    J. Pitman, (1999) The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree Ann. Probab. 27, 261–283.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Bernhard Gittenberger
    • 1
  1. 1.Department of Geometry Technische Universität Wien Wiedner Hauptstraße 8-10/113WienAustria

Personalised recommendations