A Note on Random Suffix Search Trees

  • Luc Devroye
  • Ralph Neininger
Conference paper
Part of the Trends in Mathematics book series (TM)


A random suffix search tree is a binary search> tree constructed for the suffixes Xi = 0.BiBi+1Bi+2... of a sequence B1, B2... of independent identically distributed random b- ary digits Bj. Let Dn denote the depth of the node for Xn in this tree when B1 is uniform on ℤb. We show that for any value of \(b > 1, \mathbb{E}{{\text{D}}_n} = 2 \log n + O({\log ^2}\log n)\) just as for the random binary search tree. We also show that \({D_n}/\mathbb{E}{{\text{D}}_n} \to 1\) in probability.


Search Tree Suffix Tree Binary Search Tree Suffix Array Uniform Integrability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Antos, A. and Devroye, L. (2000) Rawa Trees. Mathematics and Computer Science (Versailles 2000) 3–15, Birkhäuser, Basel.CrossRefGoogle Scholar
  2. [2]
    Apostolico, A. (1985) The myriad virtues of suffix trees. Combinatorial Algorithms on Words 85–96, Springer-Verlag.Google Scholar
  3. [3]
    Billingsley, P. (1979) Probability and Measure. John Wiley, New YorkChichester-Brisbane.zbMATHGoogle Scholar
  4. [4]
    Chung, K. L. and Erdös, P. (1952) On the application of the Borel-Cantelli lemma. Trans. Amer. Math. Soc. 72 179–186.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Crochemore, M. and Rytter, W. (1994) Text Algorithms. Oxford University Press, New YorkzbMATHGoogle Scholar
  6. [6]
    Devroye, L. (1986) A note on the height of binary search trees. Journal of the ACM 33 489–498.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Devroye, L. (1987) Branching processes in the analysis of the heights of trees. Acta Inform. 24 277–298.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Devroye, L. (1994) On random Cartesian trees. Random Structures Algorithms 5 305–327.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Devroye, L. and Goudjil, A. (1998) A study of random Weyl trees. Random Structures Algorithms 12 271–295.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Devroye, L. and Neininger, R. (2002) Random suffix search trees. Technical Report, McGill University.Google Scholar
  11. [11]
    DevroyeL. Szpankowski, W. and Rais, B. (1992) A note on the height of suffix trees. SIAM Journal on Computing 21 48–53.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Farach, M. (1997) Optimal suffix tree construction with large alphabets. IEEE Symp. Found. Computer Science 137–143.Google Scholar
  13. [13]
    Farach, M. and Muthukrishnan, S. (1996) Optimal logarithmic time randomized suffix tree construction. Proc. 23rd ICALP 550–561.Google Scholar
  14. [14]
    Farach, M. and Muthukrishnan, S. (1997) An optimal, logarithmic time, randomized parallel suffix tree contruction algorithm. Algorithmica 19 331–353.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Giancarlo, R. (1993) The suffix tree of a square matrix, with applications. Proc. of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms 402–411.Google Scholar
  16. [16]
    Giancarlo, R. (1995) A generalization of the suffix tree to square matrices, with applications. SIAM Journal on Computing 520–562.Google Scholar
  17. [17]
    Giegerich, R. and Kurtz, S. (1995) A comparison of imperative and purely functional suffix tree constructions. Science of Computer Programming 25 187–218.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Giegerich, R. and Kurtz, S. (1997) From Ukkonen to McCreight and Weiner: a unifying view of linear-time suffix tree construction. Algorithmica 19 331–353.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Gusfield, D. (1997) Algorithms on Strings Trees and Sequences. Computer Science and Computational Biology. Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  20. [20]
    Jacquet, P., Rais, B. and Szpankowski, B. (1995) Compact suffix trees resemble PATRICIA tries: limiting distribution of depth. Technical Report RR-1995, Department of Computer Science, Purdue University.Google Scholar
  21. [21]
    Karkkainen, J. (1995) Suffix cactus: a cross between suffix tree and suffix array. Combinatorial Pattern Matching Proc. 6th Symposium on Combinatorial Pattern Matching CPM 95 937 191–204.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Knuth, D. E. (1973) The Art of Computer Programming Vol. 1: Fundamental Algorithms. Addison-Wesley, Reading, Mass., 2nd Ed.Google Scholar
  23. [23]
    Knuth, D. E. (1973) The Art of Computer Programming Vol. 3: Sorting and Searching. Addison-Wesley, Reading, Mass.Google Scholar
  24. [24]
    Kosaraju, S. (1994) Real-time pattern matching and quasi-real-time construction of suffix trees. Proc. of the 26th Ann. ACM Symp. on Theory of Computing 310–316, ACM.Google Scholar
  25. [25]
    Kurlberg, P. and Rudnick, Z. (1999) The distribution of spacings between quadratic residues. Duke Jour. of Math. 100 211–242.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Mahmoud, H. M. (1992) Evolution of Random Search Trees. John Wiley, New York.Google Scholar
  27. [27]
    Manber, U. and Myers, G. (1990) Suffix arrays: a new method for on-line string searches. Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms 319–327. SIAM, Philadelphia.Google Scholar
  28. [28]
    McCreight, E. M. (1976) A space-economical suffix tree construction algorithm. Journal of the ACM 23 262–272.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Rudnick, Z. and Zaharescu, A. (2002) The distribution of spacings between fractional parts of lacunary sequences. Forum Math. to appear.Google Scholar
  30. [30]
    Sahinalp, S. C. and Vishkin, U. (1994) Symmetry breaking for suffix tree construction. Proc. 26th Symp. on Theory of Computing 300–309.Google Scholar
  31. [31]
    Stephen, G. A. (1994) String Searching Algorithms. World Scientific, Singapore.zbMATHGoogle Scholar
  32. [32]
    Szpankowski, W. (1993) A Generalized Suffix Tree and its (Un)Expected Asymptotic Behaviors. SIAM Journal on Computing 22 1176–1198.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Szpankowski, W. (2001) Average-Case Analysis of Algorithms on Sequences. John Wiley, New York.zbMATHCrossRefGoogle Scholar
  34. [34]
    Ukkonen, E. (1995) On-line construction of suffix trees. Algorithmica 14, 249–260.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    Weiner, P. (1973) Linear pattern matching algorithms. Proceedings 14th Annual Symposium on Switching and Automata Theory 1–11. IEEE Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Luc Devroye
    • 1
  • Ralph Neininger
    • 1
  1. 1.School of Computer ScienceMcGill UniversityCanada

Personalised recommendations