Skip to main content

Minimal Spanning Trees for Graphs with Random Edge Lengths

  • Conference paper
Mathematics and Computer Science II

Part of the book series: Trends in Mathematics ((TM))

Abstract

The theory of the minimal spanning tree (MST) of a connected graph whose edges are assigned lengths according to independent identically distributed random variables is developed from two directions. First, it is shown how the Tutte polynomial for a connected graph can be used to provide an exact formula for the length of the minimal spanning tree under the model of uniformly distributed edge lengths. Second, it is shown how the theory of local weak convergence provides a systematic approach to the asymptotic theory of the length of the MST and related power sums. Consequences of these investigations include (1) the exact rational determination of the expected length of the MST for the complete graph Kn for 2 ≤ n ≤ 9 and (2) refinements of the results of Penrose (1998) for the MST of the d-cube and results of Beveridge, Frieze, and McDiarmid (1998) and Frieze, Ruzink6, and Thoma (2000) for graphs with modest expansion properties. In most cases, the results reviewed here have not reached their final form, and they should be viewed as part of work-in-progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Aldous (1992) Asymptotics in the random assignment problem Probab. Th. Rel. Fields, 93, 507–534.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.J. Aldous (2001) The ç(2) limit in the random assignment problem Random Structures Algorithms, 18, 381–418.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.J. Aldous and J.M. Steele (2002) The Objective Method and the Theory of Local Weak Convergence in Discrete and Combinatorial Probability (ed. H. Kesten), Springer-Verlag, New York. [in press]

    Google Scholar 

  4. N. Alon, A. Frieze, and D. Welsh (1994) Polynomial time randomized approximation schemes for the Tutte polynomial of dense graphs pp. 24–35 in the Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (S. Goldwasser, ed.), IEEE Computer Society Press, 1994.

    Google Scholar 

  5. F. Avram and D. Bertsimas (1992) The minimum spanning tree constant in geometric probability and under the independent model: a unified approach Annals of Applied Probability 2, 113–130.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Beveridge, A. Frieze, C. McDiarmid (1998) Minimum length spanning trees in regular graphs Combinatorica 18, 311–333.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.M. Dudley (1989) Real Analysis and Probability Wadworth Publishing, Pacific Grove CA.

    MATH  Google Scholar 

  8. A.M. Frieze (1985) On the value of a random minimum spanning tree problem Discrete Appl. Math. 10, 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.M. Frieze and C.J.H. McDiarmid (1989) On random minimum lenght spanning trees Combinatorica, 9, 363–374.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. M. Frieze, M. Ruszinkó, and L. Thoma (2000) A note on random minimum lenght spanning trees Electronic Journal of Combinatorics 7, Research Paper 5, (5 pp.)

    Google Scholar 

  11. I.M. Gessel and B.E. Sagan (1996) The Tutte polynomial of a graph depth-first search and simpicial complex partitions Electronic Journal of Combinatorics 3, Reseach Paper 9, (36 pp.)

    Google Scholar 

  12. T.H. Harris (1989) The Theory of Branching Processes Dover Publications, New York.

    Google Scholar 

  13. S. Janson (1995) The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph Random Structures and Algorithms 7, 337–355.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Karger (1999) A randomized fully polynomial time approximation scheme for the all-terminal network reliablity problem SIAM Journal of Computing 29, 492–514.

    Article  MathSciNet  Google Scholar 

  15. J.F.C. Kingman (1993) Poisson Processes Oxford Universtiy Press, New York, 1993.

    MATH  Google Scholar 

  16. P.A.P. Moran (1967) A non-Markovian quasi-Poisson process Studia Scientiarum Mathematicarum Hungarica 2, 425–429.

    MathSciNet  MATH  Google Scholar 

  17. S. Negami (1987) Polynomial Invariants of Graphs Transactions of the American Mathematical Society 299, 601–622.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Parisi (1998) A conjecture on radon’ bipartite matching ArXiv Condmat 980–1176.

    Google Scholar 

  19. M. Penrose (1998) Random minimum spanning tree and percolation on the n-cube Random Structures and Algorithms 12, 63–82.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Rényi, (1967) Remarks on the Poisson Process Studia Scientiarum Mathematicarum Hungarica 2, 119–123.

    MathSciNet  MATH  Google Scholar 

  21. J.M. Steele(1987) On Frieze’s ζ(3)limit for lengths of minimal spanning trees Discrete Applied Mathematics, 18 (1987), 99–103.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.M. Steele (1997) Probability Theory and Combinatorial Optimization NSFCBMS Volume 69. Society for Industrial and Applied Mathematics, Philadelphia.

    Book  Google Scholar 

  23. D. Welsh (1999) The Tutte Polynomial Random Structures and Algorithms 15, 210–228.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Williams (1991) Probability with Martingales Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Steele, J.M. (2002). Minimal Spanning Trees for Graphs with Random Edge Lengths. In: Chauvin, B., Flajolet, P., Gardy, D., Mokkadem, A. (eds) Mathematics and Computer Science II. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8211-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8211-8_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9475-3

  • Online ISBN: 978-3-0348-8211-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics