Skip to main content

A Sharp Threshold for a Non-monotone Digraph Property

  • Conference paper
Mathematics and Computer Science II

Part of the book series: Trends in Mathematics ((TM))

  • 503 Accesses

Abstract

We define a non-monotone digraph property TOUR1, a variant of the digraph property KERNEL, which refines the notion of maximal tournament. First we prove that there is a constant 0 < α < 1 such that TOUR1 is asymptotically almost surely true in random digraphs with constant arc probability p ≤ α and asymptotically almost surely false in random digraphs with constant arc probability p > α. Then we concentrate our study on random digraphs with arc probability close to a and we obtain a sharp threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and J. Spencer, The probabilistic method. John Wiley ans Sons New York 1992, 254 pp.

    MATH  Google Scholar 

  2. B. Bollobas, Random Graphs, Second Edition Cambridge University Press 2001, 498 pp.

    Book  MATH  Google Scholar 

  3. B. Bollobás and A. Thomason, Threshold Functions. Combinatorica 7, 1987

    Google Scholar 

  4. V. Chvãtal. On the computational complexity of finding a kernel. Technical report, Report NO CRM-300, univ. de Montréal, 1973. Centre de Recherches Mathématiques.

    Google Scholar 

  5. N. Creignou. The class of problems that are linearly equivalent to satisfiability or a uniform method for proving NP-completeness . Theoretical Computer Science 145:111–145, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Erdös and A. Rényi. On the evolution of random graphs. Pupl. Math. Inst. Hungar. Acad. Sci. 7:17–61, 1960.

    Google Scholar 

  7. E. Friedgut and G. Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124:2993–3002, 1996

    MathSciNet  MATH  Google Scholar 

  8. W. Fernandez De La Vega. Kernel on random graphs. Discrete Mathematics 82:213–217, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Janson, T. Luczak and A. Rucinski, Random Graphs. John Wiley ans Sons New York 2000, 333 pp.

    Book  MATH  Google Scholar 

  10. Ph. G. Kolaitis and M.Y. Vardi. 0–1 laws for Fragments of Existential Second-Order Logic: A Survey. Mathematical Foundations of Computer Science pages 84–98, 2000.

    Google Scholar 

  11. J-M. Le Bars. Fragments of existential second-order logic without 0–1 laws. In Proceedings of the 13th IEEE Symposium on Logic in Computer Science 1998.

    Google Scholar 

  12. J-M. Le Bars. Counterexamples of the 0–1 law for fragments of existential second-order logic: an overview. Bulletin of Symbolic Logic 9:67–82, 2000.

    Article  Google Scholar 

  13. J-M. Le Bars. The 0–1 law fails for frame satisfiability of propositional modal logic. to appear at Symposium on Logic in Computer Science (LICS’2002), 2002.

    Google Scholar 

  14. I. Tomescu. Almost all digraphs have a kernel. Discrete Mathematics 84:18–192, 1990.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Le Bars, JM. (2002). A Sharp Threshold for a Non-monotone Digraph Property. In: Chauvin, B., Flajolet, P., Gardy, D., Mokkadem, A. (eds) Mathematics and Computer Science II. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8211-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8211-8_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9475-3

  • Online ISBN: 978-3-0348-8211-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics