Advertisement

n-Colored Maps and Multilabel n-Colored Trees

  • Didier Arquès
  • Anne Micheli
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

New topological operations are introduced in order to recover in another way the generalized Dyck equation for the generating function of n-colored maps presented in a former paper by decomposing maps topologically and bijectively. Applying repeatedly the operations which allowed to reveal the generalized Dyck equation to the successive transformed maps a one-to-one correspondence is obtained between n-colored maps on any surface and n-colored trees whose vertices can be labelled with several labels. This bijection provides us with coding of these maps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Arquès, Relations fonctionnelles et dénombrement des cartes pointées sur le tore, J. Combin. Theory Ser. B 43 (1987) 253–274.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Arquès, D. and Béraud, J.F., ‘Rooted maps on orientable surfaces, Riccati’s equation and continued fractions.” Discrete Math. 215(2000), 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Arquès and A. Giorgetti, ‘Enumération des cartes pointées de genre quelcquonque en fonction des nombres de sommets et de faces”, J. Combin. Theory Ser. B 77 (1999) 1–24.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Arquès, D. and Micheli, A., ‘Enumeration of multi-colored rooted maps” Actes du Lacim 2000 27(2000), 31–42.Google Scholar
  5. [5]
    Arquès, D. and Micheli, A., ‘Enumeration of multi-colored rooted maps” Discrete Math. to be published.Google Scholar
  6. [6]
    E.A. Bender and E.R. Canfield, ‘The number of rooted maps on an orientable surface”, J. Combin. Theory Ser. B, 53 (1991), 293–299.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Cori, R., ‘Un code pour les graphes planaires et ses applications” Astérisque 27(1975).Google Scholar
  8. [8]
    Cori, R. and A. Machi, ‘Maps, hypermaps and their automorphisms: a survey I, II, III”, Expo. Math. 10 (1992), 403–427, 429–447, 449–467.Google Scholar
  9. [9]
    R. Cori et B. Vauquelin, ‘Planar maps are well labelled trees”, Canad. J. Math. 33 (5) (1981), 1023–1042.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    P. Flajolet, ‘Combinatorial aspects of continued fractions”, Discrete Math. 32 (1980) 125–161.MathSciNetzbMATHGoogle Scholar
  11. [11]
    D.M. Jackson et T.I. Visentin, ‘A character theoretic approach to embeddings of rooted maps in an orientable surface of given genus”, Trans. Amer. Math. Soc. 322 (1990), 343–363.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A. Jacques, ‘Sur le genre d’une paire de substitutions”, C. R. Acad. Sci. Paris 267 (1968), 625–627.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Marcus et B. Vauquelin, ‘Un codage des cartes de genre quelconque”, Actes de FPSAC’95, Marne-La-Vallée (1995), 399–415.Google Scholar
  14. [14]
    P. Ossona de Mendez et P. Rosenstiehl, ‘Connected permutations and hypermaps”, les cahiers du CAMS 183, available athttp://www.ehess.fr/centres/cams/papers /centres/cams/papers
  15. [15]
    W.T. Tutte, ‘A census of planar mAps”, Canad. J. Math. 15 (1963) 249–271.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    W.T. Tutte, ‘On the enumeration of planar maps”, Bull. Amer. Math. Soc. 74 (1968) 64–74.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    T.R.S. Walsh et A.B. Lehman, ‘Counting rooted maps by genus. I” J. Combin. Theory Ser. B 13 (1972), 192–218.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Didier Arquès
    • 1
  • Anne Micheli
    • 1
  1. 1.Université de Marne-La-ValléeMarne la Vallée Cedex 2France

Personalised recommendations