Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising earthquake forecasting method, the load-unload response ratio (LURR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bak, P., Tang, C., and Wiesenfeld, K. (1987), Self-Organized Criticality: An Explanation of 1/f Noise, Phys. Rev. Lett. 59, 381-384.

    Article  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1988), Self Organized Criticality, Phys. Rev. A 38, 364-374.

    Article  Google Scholar 

  • Bak, P. Self-Organized Criticality: A Holistic view of Nature.Complexity: MetaphorsModelsand Reality (eds. Cowan, G., Pines, D. and Meltzer, D.) (SFI Studies in Sciences of Complexity, Proc. Vol. XIX, Addison-Wesley 1994) pp. 477-493.

    Google Scholar 

  • Bai, Y. L., Lu, C.S., Ke, F. J., Xia, M. F. (1994), Evolution Induced Catastrophe, Phys. Lett. A 185, 196-199.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C. G. (2001), Characterization of Fault Zones, Pure Appl. Geophys., (in press).

    Google Scholar 

  • Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D. (1998), An Observational Test of the Critical Earthquake Concept, J. Geophys. Res. 103, 359.

    Google Scholar 

  • Curran, D. R., Seaman, L., and Shockey, D. A. (1997), Dynamic Failure of Solids, Phys. Rep. 147, 253-388.

    Article  Google Scholar 

  • Curtin, W. A. (1997), Toughening in Disordered Brittle Materials, Phys. Rev. B 55, 11270-11276.

    Google Scholar 

  • Coleman, B. D. (1958), On The Strength of Classical Fibers and Fiber Bundles, J. Mech. Phys. Solids 7, 60-70.

    Article  Google Scholar 

  • Daniels, H. E. (1945), The Statistical Theory of The Strength of Bundles of Threads, Proc. Roy. Soc. London A 183, 405-435.

    Article  Google Scholar 

  • Diodati, P., Marchesoni, F., and Piazza, S. (1991), Acoustic Emission from Volcanic Rocks: An Example of Self-organize Criticality, Phys. Rev. Lett. 67, 2239-2242.

    Article  Google Scholar 

  • Garcimartin, A., Guarino, L., Bellon and Ciliberto, S. (1997), Statistical Properties of Fracture Precursors, Phys. Rev. Lett. 79, 3202-3205.

    Article  Google Scholar 

  • Gutenberg, B. and Richter, C. F. (1944), Frequency of Earthquake in California, Bull. Seismol. Soc. Am. 34, 125-188.

    Google Scholar 

  • Geller, R. J., Jacksom, D. D., Kagan, Y. Y., and Mulargia, F. (1997), Earthquakes Cannot be Predicted, Science 275, 1616-1617.

    Article  Google Scholar 

  • Heimpel, M. (1997), Critical Behaviour and the Evolution of Fault Strength during Earthquake Cycles, Nature, 388, 865-868.

    Article  Google Scholar 

  • Ibnabdeljalil, M. and Curtin, W.A. (1997), Strength and Reliability of Fiber-reinforced Composites:Local Load Sharing and Associated Size Effects, Int. J. Solids and Structures 34, 2649-2668.

    Article  Google Scholar 

  • Jaume, S. C. and Sykes L. R. (1999), Evolving Towards a Critical Point: A Review of Accelerating Seismic Moment! Energy Release Prior to Large and Great Earthquakes, Pure Appl. Geophys. 155, 279-305.

    Article  Google Scholar 

  • Knopoff, L. (2000), The Magnitude Distribution of Declustered Earthquakes in Southern California, Proc. Natl. Acad. Sci. USA 97, 11880-11884.

    Article  Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Ponomarev, A., and Sidorin, A. (1991), Quasi-Static Fault Growth and Shear Fracture Energy in Granite, Nature 350, 439-443.

    Article  Google Scholar 

  • Lockner, D. A. and Byerlee, J. D., Precursory AE Patterns Leading to Roch Fracture. In Proc. 5th Conf on Acoustic Emmisions1 Microseismic Active in Geologic Structure and Materials, (ed. Hardy, H.R.) (Trans. Publ. 1992) pp. 1-4.

    Google Scholar 

  • Lu, C. S., Takayasu, H., Tretyakov, A. Y., Takayasu, M., and Syumoyo, S. (1998), Lattice Model of the Brittle Crust, Self-Organized Criticality in a Block, Phys. Lett. A 242, 349-354.

    Article  Google Scholar 

  • Langer, J. S., Carlson, J. M., Myers, C. R., and Shaw, B. E. (1996), Slip Complexity in Dynamic Models of Earthquake Faults, Proc. Natl. Acad. Sci. USA 93, 3825-3829.

    Article  Google Scholar 

  • Meakin, P. (1991), Models for Material Failure and Deformation, Science 252, 226-234.

    Article  Google Scholar 

  • Sahimi, M. and Arbabi, S. (1993), Mechanics of Disordered Solid. III. Fracture Properties, Phys. Rev. B 47, 713-722.

    Article  Google Scholar 

  • Sammis, C. G. and Smith S. W. (1999), Seismic Cycles and the Evolution of Stress Correlation in Cellular Automaton Models of Finite Fault Networks, Pure Appl. Geophys. 155, 307-334.

    Article  Google Scholar 

  • Stein, R. S. (1999), The Role of Stress Transfer in Earthquake Occurrence, Nature 402, 605-609.

    Article  Google Scholar 

  • Swinbanks, D. (1997), Quake Panel Admits Prediction is Difficult’, Nature 388, 4.

    Article  Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Gross, S. J., and Klein, K. (2000), Karhunen-Loeve Expansion Analysis of Seismicity on the Southern California Fault System, EOS Trans. AGU, 81(48), Fall Meet. Suppl., Abstract NG61A-12, 2000.

    Google Scholar 

  • Turcotte, D. L. (1999), The Physics of Earthquakes: Is It a Statistical Problem?, In Proc. 1-st ACES Workshop Proceedings. (ed. Mora, P.), 95-98 (The APEC Cooperation for Earthquake Simulation, Brisbane).

    Google Scholar 

  • Wang, C. Y. and Cai, Y. E. (1997), Sensitivity of Earthquake Cycles on the San Andreas Fault to Small Changes in Regional Compression, Nature 388, 158-161.

    Article  Google Scholar 

  • Wang, Y. C., Yin, X. C., and Wang, H. T. (1998), The Experimental Simulation of Rocks on Load) Unload Response Ratio for Earthquake Prediction, Earthquake Research in China (English Version) 12, 367-372.

    Google Scholar 

  • Wei, Y. J., Xia, M. F., Ke, F. J., Yin, X. C., and Bai, Y. L. (2000), Evolution-Induced Catastrophe and Its Predictability, Pure Appl. Geophys. 157, 1945-1957.

    Article  Google Scholar 

  • Wyss, M., Aceves, R. L., Park, S. K., Geller, R. J., Jackson, D.D., Kagan, Y.Y., and Mulargia F. (1997), Cannot Earthquakes Be Predicted?, Science 275, 487-490.

    Article  Google Scholar 

  • Xia, M. F., Bai, Y. L., and Ke, F. J. (1996), A Stochastic Jump and Deterministic Dynamics Model of Impact Failure Evolution with Rate Effect, Theor. Appl. Frac. Mech. 24, 189-196.

    Article  Google Scholar 

  • Xia, M. F., Ke, F. J., Bai, J., and Bai, Y. L. (1997), Threshold Diversity and Trans-Scales Sensitivity in a Nonlinear Evolution Model, Phys. Lett. A 236, 60-64.

    Article  Google Scholar 

  • Xia, M. F., Ke, F. J., Wei, Y. J., Bai, J., and Bai, Y. L. (2000), Evolution Induced Catastrophe in a Nonlinear Dynamical Model of Materials Failures, Nonlinear Dynamics 22, 205-224.

    Article  Google Scholar 

  • Yin, X. C., Chen, X. Z., Song, Z. P., and Yin, C. (1994), A New Approach to Earthquake Prediction: Load/ Unload Response Ratio (LURR) Theory, Pure Appl. Geophys. 145, 701-705.

    Article  Google Scholar 

  • Yin, X. C., Chen, X. Z., Wang, Y. C., Wang, H. T., Peng, K. Y., Zhang, Y. X., and Zhuang, J. C. (1999), Development of a New Approach for Earthquake Prediction — The Load) Unload Response Ratio. In Proc. 1-st ACES Workshop Proceedings. (ed. Mora, P.), pp. 325-330 (The APEC Cooperation for Earthquake Simulation, Brisbane).

    Google Scholar 

  • Yin, X. C., Mora, P., Peng, K. Y., Wang, Y. C., and Weatherly, D. (2002), Load-unload Response Ratio and Accelerating Moment/Energy ReleaseCritical Region Scaling and Earthquake Prediction, Pure appl. geophys. 159, 2511-2523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Xia, M.F., Wei, Y.J., Ke, F.J., Bai, Y.L. (2002). Critical Sensitivity and Trans-scale Fluctuations in Catastrophic Rupture. In: Matsu’ura, M., Mora, P., Donnellan, A., Yin, Xc. (eds) Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8197-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8197-5_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6916-3

  • Online ISBN: 978-3-0348-8197-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics