Skip to main content

GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation

  • Chapter
Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II

Abstract

The last five years have seen unprecedented growth in the amount and quality of geodetic data collected to characterize crustal deformation in earthquake-prone areas such as California and Japan. The installation of the Southern California Integrated Geodetic Network (SCIGN) and the Bay Area Regional Deformation (BARD) network are two examples. As part of the recently proposed Earthscope NSF/GEO/EAR/MRE initiative, the Plate Boundary Observatory (PBO) plans to place more than a thousand GPS, strainmeters, and deformation sensors along the active plate boundary of the western coast of the United States, Mexico and Canada (http://www.earthscope.org/pbo.com.html). The scientific goals of PBO include understanding how tectonic plates interact, together with an emphasis on understanding the physics of earthquakes. However, the problem of understanding the physics of earthquakes on complex fault networks through observations alone is complicated by our inability to study the problem in a manner familiar to laboratory scientists, by means of controlled, fully reproducible experiments. We have therefore been motivated to construct a numerical simulation technology that will allow us to study earthquake physics via numerical experiments. To be considered successful, the simulations must not only produce observables that are maximally similar to those seen by the PBO and other observing programs, but in addition the simulations must provide dynamical predictions that can be falsified by means of observations on the real fault networks. In general, the dynamical behavior of earthquakes on complex fault networks is a result of the interplay between the geometric structure of the fault network and the physics of the frictional sliding process. In constructing numerical simulations of a complex fault network, we will need to solve a variety of problems, including the development of analysis techniques (also called data mining), data assimilation, space-time pattern definition and analysis, and visualization needs. Using simulations of the network of the major strike-slip faults in southern California, we present a preliminary description of our methods and results, and comment upon the relative roles of fault network geometry and frictional sliding in determining the important dynamical modes of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett, W. L., Friedman, M., and Logan, J. M. (1981), Experimental Folding and Faulting of Rocks Under Confining Pressure. 9. Wrench Faults in Limestone Layers, Tectonophysics 79, 255-277.

    Article  Google Scholar 

  • Bawden, G. W., Michael, A. J., and Kellogg, L. H. (1999), Birth of a Fault: Connecting the Kern County and Walker Pass, California, Earthquakes, Geology 27, 601-604.

    Article  Google Scholar 

  • Blanpied, M. H., Tunis, T. E., and Weeks, J. D. (1987), Frictional Behavior of Granite at Low and High Sliding Velocities, Geophys. Res. Lett. 14, 554-557.

    Article  Google Scholar 

  • Blanpied, M. H., Tunis, T. E., and Weeks, J. D. (1998), Effects of Slip, Slip Rate, and Shear Heating on the Friction of Granite, J. Geophys. Res. 103, 489-511.

    Article  Google Scholar 

  • Burridge, R. and Knopoff, L. (1967), Model and Theoretical Seismicity, Bull. Seism. Soc. Am. 57, 341371.

    Google Scholar 

  • Deng, J. S. and Sykes, L. R. (1997), Evolution of the Stress Field in Southern California and Triggering of Moderate Size Earthquakes: A 200 Year Perspective, J. Geophys. Res. 102, 9859-9886.

    Article  Google Scholar 

  • Dieterich, J. H. (1979), Modeling of Rock Friction 1: Experimental Results and Constitutive Equations, J. Geophys. Res. 84, 2161-2168.

    Article  Google Scholar 

  • Egolf, D. A. (2000), Equilibrium Regained: From Nonequilibrium Chaos to Statistical Mechanics, Science 287, 101-104.

    Article  Google Scholar 

  • Eshelby, J. D. (1957), The determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems, Proc. Roy. Soc. Ser. A 241, 376-396.

    Article  Google Scholar 

  • Ferguson, C. D., Klein, W., and Rundle, J. B. (1999), Spinodals, Scaling and Ergodicity in a Threshold Model with Long Range Stress Transfer, Phys. Rev. E 60, 1359-1373.

    Article  Google Scholar 

  • Giering, R. and Kaminski, T. (1998), Recipes for adjoint code construction, ACM Trans. Math. Software 24, 437-474.

    Article  Google Scholar 

  • Glasscoe, M. T., Donnellan, A., Parker, J., Blythe, A. E., and Kellogg, L. H. (2000), Two dimensional finite element modeling of strain partitioning in northern metropolitan Los Angeles, EOS Trans. Am. Geophys. Un. (abstract), 81, F326.

    Google Scholar 

  • Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., and Guntherodt, H.-J. (2000), Velocity Dependence of Atomic Friction, Phys. Rev. Lett. 84, 1172-1175.

    Article  Google Scholar 

  • Goldstein, J., Klein, W., Gould, H., and Rundle, J. B. (2001), manuscript in preparation.

    Google Scholar 

  • Grant, L. B. and Sieh, K. E. (1994), Paleoseismic Evidence for Clustered Earthquakes on the San Andreas Fault in the Carrizo Plain, California, J. Geophys. Res. 99, 6819-6841.

    Article  Google Scholar 

  • Gross, S. J. and Kisslinger, C. (1994), Test of Models of Aftershock Rate Decay, Bull. Seism. Soc. Am. 84, 1571-1579.

    Google Scholar 

  • Gunton, J. D. and Droz, M. (1983), Introduction to the Theory of Metastable and Unstable States, Lecture Notes in Physics 183, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Harris, R. A. (1998), Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard, J. Geophys. Res. 103, 24,347-24,358.

    Article  Google Scholar 

  • Hopfield, J. J. (1982), Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Nat. Acad. Sci. USA 79, 2554-2558.

    Article  Google Scholar 

  • Kanamori, H. and Anderson, D. L. (1975), Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seism. Soc. Am. 65, 1073-1095.

    Google Scholar 

  • Karner, S. L. and Marone, C. Effects of loading rate and normal stress on stress drop and stick-slip recurrence interval, pp. 187-198. In Geocomplexity and the Physics of Earthquakes (eds. Rundle, J. B., Turcotte, D. L., and Klein, W.) Geophysical Monograph 120 (American Geophysical Union, Washington, DC, 2000).

    Chapter  Google Scholar 

  • Klein, W., Rundle, J. B., and Ferguson, C. D. (1997), Scaling and Nucleation in Models of Earthquake Faults, Phys. Rev. Lett. 78 3793-3796.

    Article  Google Scholar 

  • Klein, W., Anghel, M., Ferguson, C. D., Rundle, J. B., and De Sa Martins, J. S. Statistical analysis of a model for earthquake faults with long-range stress transfer, pp. 43-72. In Geocomplexity and the Physics of Earthquakes (eds. J.B. Rundle, D.L. Turcotte and W. Klein, Geophysical Monograph 120 (American Geophysical Union, Washington, DC, 2000).

    Chapter  Google Scholar 

  • Lapusta, N., Rice, J. R., Ben-Zion, Y., and Zheng, G. (2000), Elastodynamic Analysis for Slow Tectonic Loading with Spontaneous Rupture Episodes on Faults with Rate-and State-dependent Friction, J. Geophys. Res. 105, 23,765-23,791.

    Article  Google Scholar 

  • Main, I. G., O’brien, G. O., and Henderson, G. R. (2000), Statistical Physics of Earthquakes: Comparison of Distribution Exponents for Source Area and Potential Energy and the Dynamics Emergence of Log-periodic Energy Quanta, J. Geophys. Res. 105, 6105-6126.

    Article  Google Scholar 

  • Martins, J. S., De Sa, Rundle, J. B., Anghel, M., and Klein, W. (2000), Precursory Dynamics in Threshold Systems, Phys. Rev. Lett., submitted.

    Google Scholar 

  • Massonet, D. and Feigl, K.L. (1998), Radar Interferometry and Its Application to Changes in the Earth’s Surface, Rev. Geophys. 36, 441-500.

    Article  Google Scholar 

  • Morein, G. and Tuncurre, D.L. (1997), On the Statistical Mechanics of Distributed Seismicity, Geophys. J. Int. 131, 552-558.

    Article  Google Scholar 

  • Okada, Y. (1992), Internal Deformation due to Shear and Tensile Faults in a Half-space, Bull. Seismol. Soc. Am. 82, 1018-1040.

    Google Scholar 

  • Penrose, O. and Leibowitz, J. L. Towards a Rigorous Molecular Theory of Metastability, Chap.5, In Fluctuation Phenomena (eds. Montroll, E.W. and J.L. Leibowitz, (North-Holland, Amsterdam 1979)

    Google Scholar 

  • Persson, B. N. J. Sliding Friction, PHYSICAL PRINCIPLES AND APPLICATIONS (Springer-Verlag, Berlin 1998).

    Google Scholar 

  • Preston, E. Near Mean Field Earthquake Fault Models, Ph.D. dissertation (University of Colorado, 2000).

    Google Scholar 

  • Ruina, A. L. (1983), Slip Instability and State Variable Friction Laws, J. Geophys. Res. 88, 10,359-10,370.

    Article  Google Scholar 

  • Rundle, J. B. and Jackson, D. D. (1977), Numerical Simulation of Earthquake Sequences, Bull. Seismol. Soc. Am. 67, 1363-1377.

    Google Scholar 

  • Rundle, J. B. (1988), A Physical Model for Earthquakes: 1. Fluctuations and Interactions, J. Geophys. Res. 93, 6237-6254.

    Article  Google Scholar 

  • Rundle, J. B. and Brown, S. R. (1991), Origin of Rate Dependence in Frictional Sliding, J. Stat. Phys. 65, 403-412.

    Article  Google Scholar 

  • Rundle, J. B. and Klein, W. (1995), New Ideas About the Physics of Earthquakes, Reviews of Geophysics and Space Physics Supplement, and Quadrennial Report to the IUGG and AGU 1991-1994 (invited), July, 283-286.

    Google Scholar 

  • Rundle, J. B., Klein, W., Gross, S. J., and Turcotte, D. L. (1995), Boltzmann Fluctuations in Numerical Simulations of Nonequilibrium Threshold Systems, Phys. Rev. Lett. 75, 1658-1661.

    Article  Google Scholar 

  • Rundle, J. B., Preston, E., Mcginnis, S., and Klein, W. (1998), Why Earthquakes Stop: Growth and Arrest in Stochastic Fields, Phys. Rev. Lett. 80, 5698-5701.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., Tiampo, K. F., and Gross, S. J. (2000a), Linear Pattern Dynamics in Nonlinear Threshold Systems, Phys. Rev. E 61, 2418-2431.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., Tiampo, K. F., and Gross, S. J. Dynamics of seismicity patterns in systems of earthquake faults pp. 127-146. In Geocomplexity and the Physics of Earthquakes (eds. Rundle, J. B., Turcotte, D. L., and Klein, W., Geophysical Monograph 120 (American Geophysical Union, Washington, DC, 2000b).

    Chapter  Google Scholar 

  • Rundle, P. B., Rundle, J. B., Tiampo, K. F., De Sa Martins, J. S., Mcginnis, S., and Klein, W. (2001), Nonlinear Network Dynamics on Earthquake Fault Systems, Phys. Rev. Lett., submitted.

    Google Scholar 

  • Schreurs, G. (1994), Experiments on Strike Slip Faulting and Block Rotation Geology 22, 567-570.

    Article  Google Scholar 

  • Scholz, C. H. The Mechanics of Earthquakes and Faulting, (Cambridge University Press, Cambridge, UK, 1990).

    Google Scholar 

  • Sieh, K. E., Stuiver, M., and Brillinger, D. (1989), A More Precise Chronology of Earthquakes Produced by the San Andreas Fault in Southern California, J. Geophys. Res. 94 603-623.

    Article  Google Scholar 

  • Sleep, N. H. (1997), Application of a Unified Rate and State Friction Theory to the Mechanics of Fault Zones with Strain Localization, J. Geophys. Res. 102, 2875-2895.

    Article  Google Scholar 

  • Stein, R. S. (1999), The Role of Stress Transfer in Earthquake Occurrence, Nature 402, 605-609.

    Article  Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Mcginnis, S., Gross, S. J., and Klein, W. Observation of Systematic Variations in Non-local Seismicity Patterns from Southern California, pp. 211-218. In Geocomplexity and the Physics of Earthquakes (eds. Rundle, J.B., Turcotte, D.L. and Klein, W. Geophysical Monograph 120 (American Geophysical Union, Washington, DC, 2000).

    Chapter  Google Scholar 

  • Tullis, T. E. (1996), Rock Physics and its Implications for Earthquake Prediction Examined via Models of Parkfield Earthquakes, Proc. Nat. Acad. Sci. 93, 3803-3810.

    Article  Google Scholar 

  • Tullis, T. E. (1988), Rock Friction Constitutive Behavior from Laboratory Experiments and its Implications for an Earthquake Prediction Field Monitoring Program, Pure Appl. Geophys. 126, 555-588.

    Article  Google Scholar 

  • Ward, S.N. (2000), San Francisco Bay Area Earthquake Simulations, a Step Toward a Standard Physical Earthquake Model, Bull. Seismol. Soc. Am. 90, 370-386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Rundle, J.B. et al. (2002). GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation. In: Matsu’ura, M., Mora, P., Donnellan, A., Yin, Xc. (eds) Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8197-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8197-5_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6916-3

  • Online ISBN: 978-3-0348-8197-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics