Advertisement

Positive Linear Maps and the Lyapunov Equation

  • Rajendra Bhatia
  • Ludwig Elsner
Conference paper
  • 331 Downloads
Part of the Operator Theory: Advances and Applications book series (OT, volume 130)

Abstract

It is well-known that positivity plays an important role in the study of the discrete time and the continuous time Lyapunov equations. We show how general theorems on positive linear maps on matrices may be used in this context. Our method leads to several old, recent, and new bounds on the sensitivity of these equations. Further, it can be applied to related problems and to other matrix equations as well.

Keywords

Linear Algebra Matrix Equation Operator Algebra Open Unit Disk Lyapunov Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl. 118 (1989), 163–248.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Bhatia R., A note on the Lyapunov Equation, Linear Algebra Appl. 259 (1997), 71–76.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Bhatia R., Matrix Analysis,Springer, New York 1997.CrossRefGoogle Scholar
  4. [4]
    Bhatia R., Davis C., A Cauchy—Schwarz inequality for operators with applications, Linear Algebra Appl. 223 (1995), 119–129.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Bhatia, R., Davis, C., McIntosh A., Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52/53 (1983), 45–67.MathSciNetGoogle Scholar
  6. [6]
    Bhatia R., Elsner L., Sensitivity of the solutions of some matrix equations, Preprint SFB 343 97–106 (1997),.Google Scholar
  7. [7]
    Bhatia R., Parthasarathy K.R., Positive definite functions and operator inequalities, Bull. London Math. Soc. 32 (2000), 214–228.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Bhatia R., Rosenthal P., How and why to solve the operator equation AX - XB = Y, Bull. London Math. Soc. 29 (1997), 1–21.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Choi, M.D., Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285–290.zbMATHCrossRefGoogle Scholar
  10. [10]
    Gahinet P.M., Laub A., Kenney C.S., Hewer G., Sensitivity of the stable discrete—time Lyapunov equation, IEEE Trans. Automat. Control 35 (1990), 1209–1217.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Godunov S.K., Modern Aspects of Linear Algebra,American Mathematical Society, Providence 1998.zbMATHGoogle Scholar
  12. [12]
    Hammarling S.J., Numerical solution of the stable, non—negative definite Lyapunov equation, IMA J. Numer. Anal. 2 (1982), 303–323.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Hewer G., Kenney C., The sensitivity of the stable Lyapunov equation, SIAM J. Control Optim. 26 (1988), 321–344.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Higham N.J., Perturbation theory and backward error for AX - XB = C, BIT 33 (1993), 124–136.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Higham N.J., Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics 1996.zbMATHGoogle Scholar
  16. [16]
    Horn R., The Hadamard product, Matrix Theory and Applications, Proceedings of Symposia in Applied Math., Vol. 20 American Mathematical Society.1990Google Scholar
  17. [17]
    Horn R., Johnson C.R., Topics in Matrix Analysis,Cambridge University Press 1991.zbMATHCrossRefGoogle Scholar
  18. [18]
    Jocić D.R., Cauchy-Schwarz and means inequalities for elementary operators into norm ideals, Proc. Amer. Math. Soc. 126 (1998), 2705–2711.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Jonckheere E.A., New bound on the sensitivity of the solution of the Lyapunov equation, Linear Algebra Appl. 60 (1984), 57–64.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Kadison R.V., Ringrose J.R., Fundamentals of the Theory of Operator Algebras, Vol. 4, Birkh“auser, Boston 1992.zbMATHCrossRefGoogle Scholar
  21. [21]
    Kenney C., Hewer G., Trace norm bounds for stable Lyapunov equations, Linear Algebra Appl. 221 (1995), 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Kwong M.K., On the definiteness of the solutions of certain matrix equations, Linear Algebra Appl. 108 (1988), 177–197.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Lancaster P., Explicit solutions of linear matrix equations, SIAM Review 12 (1970), 544–566.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Lancaster P., Tismenetsky M., The Theory of Matrices, Academic Press, New York 2nd ed. 1985.zbMATHGoogle Scholar
  25. [25]
    Paulsen V., Completely Bounded Maps and Dilations,Longman, Harlow 1986.zbMATHGoogle Scholar
  26. [26]
    Rudin W., Real and Complex Analysis,McGraw-Hill Book Co., New York 1966.zbMATHGoogle Scholar
  27. [27]
    Tippett M.K., Cohn S.E., Todling R., Marchesin D., Conditioning of the stable, discrete Lyapunov operator, SIAM J. Matrix Anal. Appl. 22 (2000), 56–65.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Tippett M.K., Marchesin D., Upper bounds for the solution of the discrete algebraic Lyapunov equation, Automatica 35 (1999), 1485–1489.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Rajendra Bhatia
    • 1
  • Ludwig Elsner
    • 2
  1. 1.Delhi Center, 7, S.J.S. Sansanwal MargIndian Statistical InstituteNew DelhiIndia
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations