Skip to main content

Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 130))

Abstract

We consider linear systems of differential equations \(I\ddot x + B\dot x + Cx = 0\) where I is the identity matrix and B and C are general complex n x n matrices. Our main interest is to determine conditions for complete marginal stability of these systems. To this end we find solutions of the Lyapunov matrix equation and characterize the set of matrices (B,C) which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal stability. Comparison is made with some known results for equations with real system matrices. Moreover more general cases are investigated and several examples are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomson, W., Tait, P.G., Treatise on Natural Philosophy, Vol. I, Cambridge University Press 1879.

    Google Scholar 

  2. Lancaster, P., Lambda-matrices and Vibrating Systems, Pergamon Press 1966.

    MATH  Google Scholar 

  3. Muller, P.C., Stabilität and Matrizen, Springer-Verlag 1977.

    Google Scholar 

  4. Huseyin, K., Vibrations and stability of multiple parameter systems, Noordhoff International publishing, Alphen aan den Rijn 1978.

    MATH  Google Scholar 

  5. Merkin, D.R., Introduction to the theory of stability of motion, Nauka, Moscow 1987.

    MATH  Google Scholar 

  6. Hagedorn, P., Über die Instabilität konservativer Systeme mit gyroskopischen Kraften, Arch. Rat. Mech. Anal. 58 (1975), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barkwell, L., Lancaster, P., Overdamped and Gyroscopic Vibrating Systems, ASME J. Appl. Mech. 59 (1992), 176–181.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lancaster, P., Zizler, P., On the Stability of gyroscopic Systems, ASME J. Appl. Mech. 65 (1998), 519--522.

    Article  MathSciNet  Google Scholar 

  9. Walker, J.A., Stability of linear conservative gyroscopic systems, ASME J. Appl. Mech. 58 (1991), 229–232.

    Article  MATH  Google Scholar 

  10. Hryniv, R., Kliem, W., Lancaster, P., Pommer, C., A Precise Bound for Gyroscopic Stabilization, Z. Angew. Math. Mech., ZAMM (2000), to appear.

    Google Scholar 

  11. Seyranian, A.P., Stoustrup, J., Kliem, W., On gyroscopic stabilization, Z. angew. Math. Phys., ZAMP 46 (1995), 255–267.

    Article  MathSciNet  MATH  Google Scholar 

  12. Veselic, K., On the Stability of Rotating Systems, Z. angew. Math. Mech., ZAMM 75 (1995), 325–328.

    Article  MathSciNet  MATH  Google Scholar 

  13. Freitas, P., Quadratic matrix polynomials with Hamiltonian spectrum and oscillatory damped systems, Z. angew. Math. Phys., ZAMP 50 (1999), 64–81.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lancaster, P., Tismenetsky, M., The Theory of Matrices, Academic Press 1985.

    MATH  Google Scholar 

  15. Ziegler, H., Linear Elastic Stability, Z. angew. Math. Phys., ZAMP 4 (1953), 89–121.

    Article  MATH  Google Scholar 

  16. Taussky, 0., The role of symmetric matrices, Linear Algebra Appl. 5 (1972), 147–154.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pommer, C., Kliem, W., Simultaneously Normalizable Matrices, Linear Algebra Appl. 94 (1987), 113–125.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Kliem, W., Pommer, C. (2002). Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems. In: Gohberg, I., Langer, H. (eds) Linear Operators and Matrices. Operator Theory: Advances and Applications, vol 130. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8181-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8181-4_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9467-8

  • Online ISBN: 978-3-0348-8181-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics