Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems

  • Wolfhard Kliem
  • Christian Pommer
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 130)


We consider linear systems of differential equations \(I\ddot x + B\dot x + Cx = 0\) where I is the identity matrix and B and C are general complex n x n matrices. Our main interest is to determine conditions for complete marginal stability of these systems. To this end we find solutions of the Lyapunov matrix equation and characterize the set of matrices (B,C) which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal stability. Comparison is made with some known results for equations with real system matrices. Moreover more general cases are investigated and several examples are given.


Lyapunov Function Stable System Marginal Stability Real Symmetric Matrix Matrice Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Thomson, W., Tait, P.G., Treatise on Natural Philosophy, Vol. I, Cambridge University Press 1879.Google Scholar
  2. [2]
    Lancaster, P., Lambda-matrices and Vibrating Systems, Pergamon Press 1966.zbMATHGoogle Scholar
  3. [3]
    Muller, P.C., Stabilität and Matrizen, Springer-Verlag 1977.Google Scholar
  4. [4]
    Huseyin, K., Vibrations and stability of multiple parameter systems, Noordhoff International publishing, Alphen aan den Rijn 1978.zbMATHGoogle Scholar
  5. [5]
    Merkin, D.R., Introduction to the theory of stability of motion, Nauka, Moscow 1987.zbMATHGoogle Scholar
  6. [6]
    Hagedorn, P., Über die Instabilität konservativer Systeme mit gyroskopischen Kraften, Arch. Rat. Mech. Anal. 58 (1975), 1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Barkwell, L., Lancaster, P., Overdamped and Gyroscopic Vibrating Systems, ASME J. Appl. Mech. 59 (1992), 176–181.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Lancaster, P., Zizler, P., On the Stability of gyroscopic Systems, ASME J. Appl. Mech. 65 (1998), 519--522.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Walker, J.A., Stability of linear conservative gyroscopic systems, ASME J. Appl. Mech. 58 (1991), 229–232.zbMATHCrossRefGoogle Scholar
  10. [10]
    Hryniv, R., Kliem, W., Lancaster, P., Pommer, C., A Precise Bound for Gyroscopic Stabilization, Z. Angew. Math. Mech., ZAMM (2000), to appear.Google Scholar
  11. [11]
    Seyranian, A.P., Stoustrup, J., Kliem, W., On gyroscopic stabilization, Z. angew. Math. Phys., ZAMP 46 (1995), 255–267.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Veselic, K., On the Stability of Rotating Systems, Z. angew. Math. Mech., ZAMM 75 (1995), 325–328.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Freitas, P., Quadratic matrix polynomials with Hamiltonian spectrum and oscillatory damped systems, Z. angew. Math. Phys., ZAMP 50 (1999), 64–81.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Lancaster, P., Tismenetsky, M., The Theory of Matrices, Academic Press 1985.zbMATHGoogle Scholar
  15. [15]
    Ziegler, H., Linear Elastic Stability, Z. angew. Math. Phys., ZAMP 4 (1953), 89–121.zbMATHCrossRefGoogle Scholar
  16. [16]
    Taussky, 0., The role of symmetric matrices, Linear Algebra Appl. 5 (1972), 147–154.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Pommer, C., Kliem, W., Simultaneously Normalizable Matrices, Linear Algebra Appl. 94 (1987), 113–125.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Wolfhard Kliem
    • 1
  • Christian Pommer
    • 1
  1. 1.Department of MathematicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations