Advertisement

Spectral Isomorphisms between Generalized Sturm-Liouville Problems

  • Paul A. Binding
  • Patrick J. Browne
  • Bruce A. Watson
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 130)

Abstract

We characterize all isospectral norming constant preserving maps between certain classes of Sturm-Liouville problems with eigenparameter dependent and constant boundary conditions. In consequence we obtain existence and uniqueness inverse spectral results for Sturm-Liouville problems with eigenparameter dependent boundary conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Binding P.A., Browne P.J., Seddighi K., Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proceedings of the Edinburgh Mathematical Society 37 (1993), 57–72.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Binding P.A., Browne P.J., Watson B.A., Inverse spectral problems for SturmLiouville equations with eigenparameter dependent boundary conditions, J. London Math. Soc., to appear.Google Scholar
  3. [3]
    Binding P.A., Browne P.J., Watson B.A., Transformations between Sturm-Liouville equations with eigenvalue dependent and independent boundary conditions, submitted.Google Scholar
  4. [4]
    Fulton C.T., Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh 77A (1977), 293–308.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Fulton C.T., Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. Royal Soc. Edinburgh 87A (1980), 1–34.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Dijksma A., Langer H., Operator theory and ordinary differential operators, Fields Institute Monographs 3 (1996), 75–139.Google Scholar
  7. [7]
    Dijksma A., Langer H., de Snoo H.S.V., Symmetric Sturm-Liouville operators with eigenvalue depending boundary conditions, Canadian Math. Soc. Conference Proceedings 8 (1987), 87–116.Google Scholar
  8. [8]
    Gelfand I.M., Levitan B.M., On the determination of a differential equation from its spectral functionAmer. Math. Soc. Translations,Series 2, 1 (1955), 253–304.MathSciNetGoogle Scholar
  9. [9]
    Isaacson E.L., McKean H.P., Trubowitz E., The inverse Sturm-Liouville problem, Comm. Pure and Applied Math. 37 (1984), 1–11.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Levinson N., Gap and Density Theorems Amer. Math. Soc. Colloquium Publications 26 (1940).Google Scholar
  11. [11]
    Levitan B.M., Gasymov M.G., Determination of a differential equation by two of it spectra, Russian Math. Surveys 19 (1964), 1–64.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Marchenko V.A., Some questions in the theory of one-dimensional linear differential operators of the second order, Part I, Amer. Math. Soc. Translations Series 2 101 (1973), 1–104.zbMATHGoogle Scholar
  13. [13]
    McLaughlin J.R., Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Review 28 (1986), 53–72.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Thurlow C., A generalisation of the inverse spectral theorem of Levitan and Gasymov, Proc. Roy. Soc. Edinburgh 84A (1979), 185–196.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Walter J., Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z. 133 (1973), 301–312.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Paul A. Binding
    • 1
    • 2
    • 3
  • Patrick J. Browne
    • 1
    • 2
    • 3
  • Bruce A. Watson
    • 1
    • 2
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoon, SaskatchewanCanada
  3. 3.Department of MathematicsUniversity of the WitwatersrandSouth Africa

Personalised recommendations