Full- and Partial-Range Completeness

  • Paul Binding
  • Rostyslav Hryniv
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 130)


For a selfadjoint definitizable operator in a Krein space we study relations between various completeness properties of its root vectors and regularity of its critical points


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AI]
    Azizov, T. Ya, Iohvidov, I. S., Linear Operators in Spaces with an Indefinite Metric, John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1989.Google Scholar
  2. [Be]
    Beals, R., Indefinite Sturm-Liouville problems and half-range completeness, J.Differential Equations 56 (1985), 391–407.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Bi]
    Binding, P., A canonical form for self-adjoint pencils in Hilbert spaces, Integr. Equat. Oper. Th. 12 (1989), 324–342.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [BN]
    Binding, P., Najman, B., Regularity of finite type critical points for self-adjoint operators in Krein space, Oper. Th. Adv. Appl. 80 (1995), 79–89.MathSciNetGoogle Scholar
  5. [Bo]
    Bognar, J., Indefinite Inner Product Spaces, Springer-Verlag, Berlin-Heidelberg-New York 1974.zbMATHCrossRefGoogle Scholar
  6. [CL]
    Ćurgus, B., Langer, H., A Krein space approach to symmetric ordinary differential operators with an indefinite weight function, J. Diff. Eqat. 79 (1989), 31–61.zbMATHCrossRefGoogle Scholar
  7. [CN1]
    Ćeurgus, B., Najman, B., A Krein space approach to elliptic eigenvalue problems with indefinite weights, Differential Integral Equ. 7 (1994), 1241–1252.Google Scholar
  8. [CN2]
    Ćeurgus, B., Najman, B., Quasi-uniformly positive operators in Krein spaces, Oper. Th. Adv. Appl. 80 (1995), 90–99.Google Scholar
  9. [DaL]
    Daho, K., Langer, H., Sturm-Liouville operators with an indefinite weight function, Proc. Roy. Soc. Edinburgh 87A (1977), 161–191.MathSciNetGoogle Scholar
  10. [DiL]
    Dijksma, A., Langer, H., Operator theory and ordinary differential operators, Fields Inst. Monographs 3, Amer. Math. Soc., Providence, R.I.,1996, 75–139.Google Scholar
  11. [FR]
    Faierman, M., Roach, G. F., Linear elliptic eigenvalue problems involving an indefinite weight, J. Math. Anal. Appl. 126 (1987), 516–528.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Fl]
    Fleige, A., The “turning point condition” of Beals for indefinite Sturm-Liouville problems, Math. Nachr. 172 (1995), 109–112.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [GK]
    Gohberg, I., Krein, M. G., Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Spaces, Amer. Math. Soc. Transl. of Math. Monographs 18, Providence, R.I. 1969.Google Scholar
  14. [GLR]
    Gohberg, I., Lancaster, P., Rodman, L., Matrices and Indefinite Scalar Products, Oper. Th.: Adv. Appl., vol.8, Birkhauser Verlag, Basel-Boston-Stuttgart 1983.zbMATHGoogle Scholar
  15. [KKLZ]
    Kaper, H. G. Kwong, M. K., Lekkerkerker, C. G., Zettl, A., Full-and partial-range eigenfunction expansions for Sturm-Liouville problems with indefinite weights, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 69–88.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [L1]
    Langer, H., Invariant subspaces of linear operators on a space with indefinite metric, Soviet Math. Dokl. 7 (1966), 849–852.zbMATHGoogle Scholar
  17. [L2]
    Langer, H., On the maximal dual pairs of invariant subspaces of J-self-adjoint operators, Mat. Zametki 7 (1970), 443–447.MathSciNetzbMATHGoogle Scholar
  18. [L3]
    Langer, H. Spectral functions of definitizable operators in Krein spaces, Lecture Notes in Mathematics 984, Springer-Verlag, Berlin, 1982,1–46.Google Scholar
  19. [Ma]
    Malcev, A. I.Foundations of Linear Algebra, Freeman 1963.Google Scholar
  20. [Py]
    Pyatkov, S., Riesz completeness of the eigenelements and associated elements of linear selfadjoint pencils, Russian Acad. Sci. Sb. Math. 81 (1995), 343–361.MathSciNetGoogle Scholar
  21. [Sh]
    Shkalikov, A. A., private communication.Google Scholar
  22. [Vo]
    Volkmer, H., Sturm-Liouville problems with indefinite weights and Everitt’s inequality, Proc. Roy. Soc. Edin. 126 (1996), 1097–1112.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Paul Binding
    • 1
    • 2
  • Rostyslav Hryniv
    • 1
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Institute for Applied Problems of Mechanics and MathematicsLvivUkraine

Personalised recommendations