Skip to main content

Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: Six Case Studies

  • Chapter

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The injection or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have been collected that consist of a few hundred to well over 10,000 induced events. We find that most induced events cluster into well-defined geometrical patterns. In many cases, we must apply high-precision, relative location techniques to observe these patterns. At three sedimentary sites, thin horizontal strands of activity are commonly found within the location patterns. We believe this reflects fracture containment between stratigraphic layers of differing mechanical properties or states of stress. At a massive carbonate and two crystalline sites, combinations of linear and planar features indicate networks of intersecting fractures and allow us to infer positions of aseismic fractures through their influence on the location patterns. In addition, the fine-scale seismicity patterns often evolve systematically with time. At sedimentary sites, migration of seismicity toward the injection point has been observed and may result from slip-induced stress along fractures that initially have little resolved shear. In such cases, triggering events may be critical to generate high levels of seismic activity. At one crystalline site, the early occurrence of linear features that traverse planes of activity indicate permeable zones and possible flow paths within fractures. We hope the continued development of microseismic techniques and refinement of conceptual models will further increase our understanding of fluid behavior and lead to improved resource management in fractured reservoirs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, J. N., and Pearson, C. F. (1982), Acoustic Emissions as a Tool for Hydraulic Fracture Location: Experience at the Fenton Hill Hot Dry Rock Site, J. Soc. Pet. Eng. 22, 523–530.

    Google Scholar 

  • Aster, R. C., and Rowe, C. A. (2000), Automatic phase pick refinement and similar event association in large seismic datasets. In Advances in Seismic Event Location, (C. Thurber and N. Rabinowitz, eds) in press.

    Google Scholar 

  • Bame, D. and Fehler, M. C. (1986), Observations of Long period Earthquakes Accompanying Hydraulic Fracturing, Geoph. Res. Lett. 13, 149–152.

    Article  ADS  Google Scholar 

  • Dobecki, T. L. (1983), Hydraulic Fracture Orientation by Use of Passive Borehole Seismics, paper SPE 12110, presented at the 1983 SPE Annual Technical Conference and Exhibition, San Francisco.

    Google Scholar 

  • Dodge, D. A., Beroza, G. C., and Ellsworth, W. L. (1995), Foreshock Sequence of the 1992 Landers, California, Earthquake and its Implications for Earthquake Nucleation, J. Geophys. Res. 100, 9865–9880.

    Article  ADS  Google Scholar 

  • Dreesen, D. S., and s, R. W. (1985), Well Completion and Operations for MHF of Fenton Hill Well EE-2, Trans. Geotherm. Res. Coun. 9, Pt II, 105–110.

    Google Scholar 

  • Dyer, B. C., Jones, R. H., Cowles, J. F., Barkved, O., and Folstad, P. G. (1999), Microseismic Survey of a North Sea Reservoir, World Oil, March, 74–78.

    Google Scholar 

  • Evernden, J. F. (1969), Identification of Earthquakes and Explosions by Use of Teleseismic Data, J. Geophys. Res. 74, 3828–3856.

    Article  ADS  Google Scholar 

  • Fehler, M. C., and S, W. S. (1991), Simultaneous Inversion for Q and Source Parameters of Microearthquakes Accompanying Hydraulic Fracturing in Granitic Rock,Bull. Seismol. Soc. Am. 81, 553–575.

    Google Scholar 

  • Fehler, M. C., House, L. S., and Kaieda, H. (1987), Determining Planes Along Which Earthquakes Occur: Method and Application to Earthquakes Accompanying Hydraulic Fracturing, J. Geophys. Res. 92, 9407–9414.

    Article  ADS  Google Scholar 

  • Fehler, M. C., Phillips, W. S., House, L. S., Jones, R. H., Aster, R., and Rowe, C. A. (2000), A Method for Improving Relative Earthquake Locations, Bull. Seismol. Soc. Am., in press.

    Google Scholar 

  • Ferrazzini, V., Chouet, B., Fehler, M. C., and Aki, K. (1990), Quantitative Analysis of Long Period Events Recorded During Hydrofracture Experiments at Fenton Hill, New Mexico, J. Geophys. Res. 95, 21,871–21,884.

    Article  ADS  Google Scholar 

  • Fix, J. E., Adair, R. G., Fisher, T., Mahrer, K., Mulcahy, C., Myers, B., Swanson, J., and Woerpel, J. C. (1989), Development of Microseismic Methods to Determine Hydraulic Fracture Dimensions, Gas Res. Inst., Tech. Rep. No. 89–0116.

    Google Scholar 

  • Franke, P. R., and Nunz, G. J. (1985), Recent Developments in the Hot Dry Rock Geothermal Energy Program, Geothermal Resources Council Annual Meeting, Preprints, 1–4.

    Google Scholar 

  • Gaucher, E., Cornet, F. H., and Bernard, P. (1998), Induced Seismicity Analysis for Structure Identification and Stress Field Determination, Paper SPE 47324, Proc. SPE/ISRM, Trondhiem, Norway.

    Google Scholar 

  • Gibowicz, S. J., Young, R. P., Talebi, S., and Rawlence, D. J. (1991), Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for Events with Moment Magnitude Smaller than -2, Bull. Seismol. Soc. Am. 81, 1157–1182.

    Google Scholar 

  • Hamilton-Smith, T., Nuttal, B. C., Gooding, P. J., Walker, D., and Drahovzal, J. A. (1990), High Volume Oil Discovery in Clinton County, Kentucky, Kentucky Gol. Surv., Ser. 11, Inf. Circ. 33.

    Google Scholar 

  • House, L. S., and Jensen, B. (1987), Focal Mechanisms of Microearthquakes Induced by Hydraulic Injection in Crystalline Rock, EOS Trans. 68, 1346.

    Google Scholar 

  • House, L. S. (1987), Locating Microearthquakes Induced by Hydraulic Fracturing in Crystalline Rock, Geophys. Res. Lett. 14, 919–921.

    Article  ADS  Google Scholar 

  • House, L. S., Flores, R., and Withers, R. (1996), Microearthquakes Induced by a Hydraulic Injection in Sedimentary Rock, East Texas, SEG 66th Ann. Meeting, pp. 110–113.

    Book  Google Scholar 

  • House, L. S., and Flores, R. (2001), Seismological Studies of a Fluid Injection in Sedimentary Rocks, East Texas,Pure appl. geophys, in press.

    Google Scholar 

  • Jones, R. H., and Stewart, R. C. (1997), A Method for Determining Significant Structures in a Cloud of Earthquakes, J. Geophys. Res. 102, 8245–8254.

    Article  ADS  Google Scholar 

  • Jones, R. H., Beauce, A., Jupe, A., Fabriol, H., and Dyer, B. C. (1995), Imaging Induced Microseismicity During the 1993 Injection Tests at Soultz-sous-Forets, France, Proc. World Geotherm. Cong., Florence, 2665–2669.

    Google Scholar 

  • Jung, R., Rummel, F., Jupe, A., Bertozzi, A., Heinemann, B., and Wallroth, T. (1996), Large-scale Hydraulic Injections in the Granitic Basement in the European HDR Programme at Soultz, France, Proc. 3rd Int. HDR Forum, Santa Fe, 75–76.

    Google Scholar 

  • Keck, R. G., and Withers, R. J. (1994), A Field Demonstration of Hydraulic Fracturing for Solid Waste Injection with Real-time Passive Seismic Monitoring, Paper SPE 28495, SPE Annual Technical Conference and Exhibition, New Orleans.

    Google Scholar 

  • Kohl, T., Evans, K. F., Hopkirk, R. J., Jung, R., and Rybach, L. (1997), Observation and Simulation of non-Darcian Flow Transients in Fractured Rock, Water Resour. Res. 33, 407–418.

    Article  ADS  Google Scholar 

  • Lees, J. M. (1998), Multiplet Analysis at Coso Geothermal, Bull. Seismol. Soc. Am. 88, 1127–1143.

    Google Scholar 

  • Li, Y. P., Cheng, C. H., and Toxsoz, M. N. (1998), Seismic Monitoring of the Growth of a Hydraulic Fracture Zone at Fenton Hill, New Mexico, Geophysics 63,120–131.

    Article  ADS  Google Scholar 

  • Maxwell, S. C., Young, R. P., Bossu, R., Jupe, A., and Dangerfield, J. (1998), Microseismic Logging of the Ekofisk Reservoir, Paper SPE 47276, Proc. SPE/ISRM, Trondhiem, Norway.

    Google Scholar 

  • Moriya, H., Nagano, K., and Niitsuma, H. (1994), Precise Source Location of AE Doublets by Spectral Matrix Analysis of Triaxial Hodogram, Geophysics 59, 36–45.

    Article  ADS  Google Scholar 

  • Pearson, C. (1981), The Relationship Between Microseismicity and High Pore Pressures During Hydraulic Stimulation Experiments in Low Permeability Granitic Rocks, J. Geophys. Res. 86, 7855–7864.

    Article  ADS  Google Scholar 

  • Phillips, W. S., House, L. S., and Fehler, M. C. (1997), Detailed Joint Structure in a Geothermal Reservoir from Studies of Induced Microearthquake Clusters, J. Geophys. Res. 102, 11,745–11,763.

    Article  ADS  Google Scholar 

  • Phillips, W. S., Fairbanks, T. D., Rutledge, J. T., and Anderson, D. W. (1998), Induced Microearthquake Patterns and Oil-producing Fracture Systems in the Austin Chalk, Tectonophysics 289, 153–169.

    Article  ADS  Google Scholar 

  • Phillips, W. S. (2000), Precise Microearthquake Locations and Fluid Flow in the Geothermal Reservoir at Soultz-sous-Forets, France, Bull. Seismol. Soc. Am. 90, 212–228.

    Article  Google Scholar 

  • Rieven, S. A. (1999), Analysis and Interpretation of Clustered Microseismicity at Geothermal and Petroleum Reservoirs, Ph.D. Thesis, MIT, Cambridge, 410 pp.

    Google Scholar 

  • Roff, A., Phillips, W. S., and Brown, D. W. (1996), Joint Structures Determined by Clustering Microearthquakes Using Waveform Amplitude Ratios, Int. J. Rock Mech. Geomech. Abs. 33, 627–639.

    Article  Google Scholar 

  • Rubin, A. M., Gillard, D., and Got, J.-L. (1999), Streaks of Microearthquakes Along Creeping Faults, Nature 400, 635–641.

    Article  ADS  Google Scholar 

  • Rutledge, J. T., Phillips, W. S., House, L. S., and Zinno, R. J. (1998a), Microseismic Mapping of a Cotton Valley Hydraulic Fracture Using Decimated Downhole Arrays, Proc. 68th Ann. Mtg., SEG, 338–341.

    Google Scholar 

  • Rutledge, J. T., Phillips, W. S., and Schuessler, B. K. (1998b), Reservoir Characterization Using Oil-production-induced Microseismicity, Clinton County, Kentucky, Tectonophysics 289, 129–152.

    Article  ADS  Google Scholar 

  • Sarda, J.-P., Perreau, P. J., and Deflandre, J.-P. (1988), Acoustic Emission Interpretation for Estimating Hydraulic Fracture Extent, Paper SPE 17723, SPE Gas Technology Symposium, Dallas.

    Google Scholar 

  • Shearer, P. M. (1997), Improving Local Earthquake Locations Using the LI Norm and Waveform Cross Correlation: Application to the Whittier Narrows, California, Aftershock Sequence, J. Geophys. Res. 102, 8269–8284.

    Article  ADS  Google Scholar 

  • Sykes, L. R. (1970), Earthquake Swarms and Sea floor Spreading, J. Geophys. Res. 75, 6598–6611.

    Article  ADS  Google Scholar 

  • Tezuka, K., and Niitsuma, H. (1997), Integrated Interpretation of Microseismic Clusters and Fracture System in a Hot Dry Rock Artificial Reservoir, Proc. 67th Ann. Mtg., SEG, 657–660.

    Google Scholar 

  • Vandecar, J. C., and Crosson, R. S. (1990), Determination of Teleseismic Relative Phase Arrival Times Using Multi-channel Cross-correlation and Least-squares,Bull. Seismol. Soc. Am. 80, 150–169.

    Google Scholar 

  • Vinegar, H. J., Wills, P. B., Demartini, D. C., Shylapobersky, J., Deeg, W. F., Adair, R. G., Woerpel, J. C., Fix, J. E., and Sorrells, G. G. (1991), Active and Passive Seismic Imaging of a Hydraulic Fracture in Diatomite, Paper SPE 22756, SPE Annual Technical Conference and Exhibition, Dallas.

    Google Scholar 

  • Walker, R. N. (1997), Cotton Valley Hydraulic Fracture Imaging Project, SPE Paper 38577, SPE Annual Technical Conference and Exhibition, San Antonio.

    Google Scholar 

  • Warpinski, N. R., and Teufel, L. W. (1987), Influence of Geologic Discontinuities on Hydraulic Fracture Propagation, J. Pet. Tech. 39, 209.

    Google Scholar 

  • Warpinski, N. R., Wright, T. B., UHL, J. E., Engler, B. P., Drozda, P. M., Petersonand Branagan, P. T. (1996), Microseismic Monitoring of the B-sand Hydraulic Fracture Experiment at the DOE/GRI Multi-site Project, Paper SPE 36450, SPE Annual Technical Conference and Exhibition, Denver.

    Google Scholar 

  • Withers, R. J., and Rieven, S. A. (1996), Fracture Development During Cuttings Injection Determined by Passive Seismic Monitoring, SEG 66th Ann. Meeting, 106–109.

    Google Scholar 

  • Zhu, X., Gibson, J., Ravindran, N., Zinno, R., and Sixta, D. (1996), Seismic Imaging of Hydraulic Fractures in Carthage Tight Sands: A pilot Study,The Leading Edge, 15, 218–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Phillips, W.S., Rutledge, J.T., House, L.S., Fehler, M.C. (2002). Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: Six Case Studies. In: Trifu, C.I. (eds) The Mechanism of Induced Seismicity. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8179-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8179-1_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6653-7

  • Online ISBN: 978-3-0348-8179-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics