Skip to main content

Tomographic Imaging of Thermally Induced Fractures in Granite Using Bayesian Inversion

  • Chapter
The Mechanism of Induced Seismicity

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The internal structure of rock samples studied in laboratory experiments can be described by a variety of physical parameters. Some of them, like the velocity of acoustic waves, enhanced velocity or quality factor can be reconstructed by means of ultrasonic tomography. This article presents the results of classical velocity tomography imaging, accompanied by the results of attenuation tomography and recently introduced enhanced velocity tomography obtained for a Lac Du Bonnet granite sample subjected to thermal stresses. To invert acoustic data recorded during six heating cycles, a Bayesian inversion scheme accompanied by a genetic algorithm optimization approach and the robust Cauchy norm have been used. To obtain the highest possible spatial resolution of images the inversion was performed in two steps. In the first step a crude parameterization of the sample was used. The result of this stage was next taken as an a priori model for a final inversion with refined parameterization. The choice of parameterization (cell sizes) and damping parameters at both stages was based on an analysis of the resolution operator. Both velocity and enhanced velocity tomography accurately imaged changes in the rock microstructure caused by thermal stresses. However, enhanced velocity tomography gave a much better spatial resolution than velocity tomography. On the other hand, attenuation tomography based on inversion of pulse rise times was able to image only a rough structure of the sample and it has difficulty with reasonable imaging of the crack formed in the sixth heating cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. and Richards, P. Quantitative Seismology (San Francisco, Freeman and Co.1985).

    Google Scholar 

  • Backus, G. and Gilbert, F. (1967), The Resolving Power of Gross Earth Data, Geophys. J. R. Astr. Soc. 13, 247–276.

    Article  ADS  Google Scholar 

  • Barnes, C. Charara, M. and Tarantola, A. Geological information and the inversion of seismic data. In Inverse Methods Interdisciplinary Elements of Methodology, Computation, and Application, vol. 63 of Lecture Notes in Earth Sciences (eds. Jacobsen, B. H. Moosegard, K. and Sibani, P.) (Berlin, SpringerVerlag 1996) pp. 98–113.

    Google Scholar 

  • Best, A. I., Mccann, C. and Sonicorr, J. (1994), The Relationships between the Velocities, Attenuations, and Petrophysical Properties of Reservoir Sedimentary Rocks, Geophys. Prosp. 42, 151–178.

    Article  ADS  Google Scholar 

  • Best, A. I. and Sams, M. S. (1997), Compressional Wave Velocity and Attenuation at Ultrasonic Frequencies in Near-surface Sedimentary Rocks, Geophys. Prosp. 45, 327–344.

    Article  ADS  Google Scholar 

  • Bichkar, R. Singh, S. K. and Ray, A. K. (1998), Genetic Algorithmic Approach to the Detection of Subsurface Voids in Cross-hole Seismic Tomography,Pattern Recogn. Lett. 19(5–6), 527–536.

    Article  Google Scholar 

  • Blair, D. P. (1990), A Direct Comparison Between Vibrational Resonance and Pulse Transmission Data for Assesment of Seismic Attenuation in Rock, Geophysics 55(1), 51–60.

    Article  ADS  Google Scholar 

  • Blair, D. P. and Spathis, A. T. (1984), Seismic Source Influence in Pulse Attenuation Studies, J. Geophys. Res. 84, 9253–9258.

    Article  ADS  Google Scholar 

  • Boshi, L. and Dziewonski, A. M. (1999), High-and Low-resolution Images of the Earth’s Mantle: Implications of Different Approaches to Tomographic Modeling,J. Geophys. Res. 104(B11), 25, 567–25,594.

    Article  ADS  Google Scholar 

  • Bunks, C. Saleck, F. M. Zaleski, S. and Chavent, G. (1995), Multiscale Seismic Waveform Inversion, Geophysics 60(5), 1457–1473.

    Article  ADS  Google Scholar 

  • Carlson, S. R. Jansen, D. P. and Young, R. P. (1993), Thermally-induced Fracturing of Lac du Bonnet Granite, Technical Report RP020AECL, Department of Geological Sciences, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Cassiani, G. Bohm, G. and Vesnaver, A. (1998), A Geostatistical Framework for Incorporating Seismic Tomography Auxiliary Data into Hydraulic Conductivity Estimation, J. Hydrol. 206(1), 58–74.

    Article  Google Scholar 

  • Červený, V. (1987) Raytracing algorithms in three-dimensional laterally varying layered structures. In Seismic Tomography with Application in Global Seismology and Exploration Geophysics (ed. Nolet G.), (Dordrecht, D. Reidel Publishing Company 1987) pp. 99–135.

    Google Scholar 

  • ČErvený, V. Molotkov, I. A. and Psentik, I. Ray Method in Seismology (Praha, Univerzita Karlova 1997).

    Google Scholar 

  • Chang, X. (1996), Relationship Between Ray Distribution and Reconstructed Velocity Image in Reflection Tomography, J. Appl. Geophys. 35(2), 145–150.

    Article  ADS  Google Scholar 

  • Debski, W. Study of the image reconstruction accuracy of active amplitude tomography. In Rockburst and Seismicity in Mines Proceedings (eds. Gibowicz, S. J. and Lasocki, S.) Postbus 1675, (Rotterdam, Netherland, Balkema 1997b) pp. 141–144.

    Google Scholar 

  • Debski, W. (2002), Imaging rock structure using acoustic waves: methods and algorithms. In Seismogenic Process Monitoring (ed. Osagawara, H.) (Balkema. in press).

    Google Scholar 

  • Debski, W. and Young, R. P. (1999), Enhanced Velocity Tomography: Practical Method of Combining Velocity and Attenuation Parameters,Geophys. Res. Lett. 26(21), 3253–3256.

    Article  ADS  Google Scholar 

  • Deal, M. and Nolet, G. (1996), Nullspace Shuttles, Geophys. J. Int. 124, 372–380.

    Article  ADS  Google Scholar 

  • Duundam, A. (1988), Bayesian Estimation in Seismic Inversion. Part I: Principles, Geophys. Prosp. 36, 878–898.

    Article  ADS  Google Scholar 

  • Eppstein, M. J. and Dougherty, D. E. (1998), Optimal 3-D Travel-time Tomography, Geophys. 63(3), 1053–1061.

    Article  Google Scholar 

  • Falls, S. D. (1993), Ultrasonic Imaging and Acoustic Emission Studies of microcrack Development in Lac du Bonnet Granite, Ph.D. Thesis, Queen’s University, Ontario, Canada.

    Google Scholar 

  • Feustel, A. J. (1998), Seismic Attenuation in Underground Mines: A Comparative Evaluation of Methods and Results, Tectonophys. 289, 31–49.

    Article  Google Scholar 

  • Feustel, A. J. andYoungR. P. (1993), Attenuation Analysis at the AECL Underground Research Laboratory Using the Spectral Ratio Method; Preliminary Results, Technical Report RP022AECL, Atomic Energy of Canada, Ltd.

    Google Scholar 

  • Friedel, M. Jackon, M. J. Wiliams, E. M. Olson, M. S. and Westman, E. (1996), Tomographic Imaging of Coal Pillar Conditions: Observations and Implications, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 33(3), 279–290.

    Article  Google Scholar 

  • Gao, S. (1997). A Bayesian Nonlinear Inversion of Seismic Body-wave Attenuation Factors, Bull. Seismol. Soc. Am. 87(4), 961–970.

    Google Scholar 

  • Gibowicz, S. J. and Kijko, A. An Introduction to Mining Seismology (San Diego, Academic Press 1994).

    Google Scholar 

  • Gladwin, M. T. and Stacey, F. D. (1974), Anelastic Degradation of Acoustic Pulse in Rock, Phys. Earth Planet. Int. 8, 332–336.

    Article  ADS  Google Scholar 

  • Gouveia, W. P. and Scale, J. (1998), Bayesian Seismic Waveform Inversion: Parameter Estimation and Uncertainty Analysis, J. Geophys. Res. 103(B2), 2759–2779.

    Article  ADS  Google Scholar 

  • Hanyga, A. and Seredynska, M. (2000), Raytracing in Elastic and Viscoelastic Media, Pure appl. geophys. 157, 679–717.

    Article  ADS  Google Scholar 

  • Husen, S. and Kissling, E. (2001), Local Earthquake Tomography Between Rays and Waves: Fat Ray Tomography, Phys. Earth Planet. Int. in press.

    Google Scholar 

  • Iyer, H. and Hirahara, K. Seismic Tomography, Theory and Practice (London, Chapman and Hall 1993).

    Google Scholar 

  • Jackson, D. D. and Matsu’ura, M. (1985), A Bayesian Approach to Nonlinear Inversion, J. Geophys. Res. 90(B1), 581–591.

    Article  ADS  Google Scholar 

  • Jansen, D. P. Carlston, S. R. Young, R. P. and Hutchins, D. A. (1993), Ultrasonic Imaging and Acoustic Emission Monitoring of Thermally Induced Microcracks in Lac du Bonnet Granite, J. Geophys. Res. 98(B12), 22,231–22,243.

    Article  ADS  Google Scholar 

  • Jin, S. and Beydoun, W. (2000), 2D Multiscale Non-linear Velocity Inversion, Geophys. Prosp. 48(1), 163–180.

    Article  ADS  Google Scholar 

  • Kaneko, K. Inoue, I. Sassa, K. and Fto, I. (1979), Monitoring stability of rock structures by means of acoustic wave attenuation. In Proc. 4th Congress of ISRM, pp. 287–292.

    Google Scholar 

  • Kavetzky, A. Chitombo, G. P. F. Mckenzie, C. K. and Yang, R. L. (1990), A Model of Acoustic Pulse Propogation and its Application to Determine Q for Rock Mass Int. J. Rock Mech. Min. Sci and Geomech. Abstr. 27(1), 33–41.

    Google Scholar 

  • Kijko, A. (1994, April), Seismological Outliers: LI or Adaptive 1p Norm Application,Bull. Seismol. Soc. Am. 84(2), 473–477.

    MathSciNet  Google Scholar 

  • Klimentos, T. and Mccann, C. (1990), Relationship among Compressional Wave Attenuation, Porosity, Clay Content, and Permeability in Sandstones, Geophys. 55, 998–1014.

    Article  Google Scholar 

  • Koper, K. D. Wyession, M. E. and Wiens, D. A. (1999), Multimodal Function Optimization with a Niching Genetic Algorithm: A Seismological Example, Bull. Seismol. Soc. Am. 89(4), 978–988.

    Google Scholar 

  • Lee, W. H. K. and Pereyra, V. Mathematical introduction to seismic tomography. In Seismic Tomography, Theory and Practice, (eds. Iyer, H. M. and Hirahara, K.), (London, Chapman and Hall. 1993) pp. 9–20.

    Google Scholar 

  • Leidenfrost, A., Ettrich, N., Gajewski, D., and Kosloff, D. (1999), Comparison of Six Different Methods for Calculating Travel-times, Geophys. Prosp. 47, 269–297.

    Article  ADS  Google Scholar 

  • Lomax, A. (1999), Path-summation Waveforms, Geophys. J. Int. 138, 702–716.

    Article  ADS  Google Scholar 

  • Lutter, W. J., Fuis, G. S., Thurber, C. H., and Murphy, J. (1999), Tomographic Images of the Upper Crust from the Los Angeles Basin to the Mojave Desert, California: Results from the Los Angeles Region Seismic Experiment, J. Geophys. Res. 104(B11), 25543–25565.

    Article  ADS  Google Scholar 

  • Maxwell, S. C. and Young, R. P. (1992), Sequential Velocity Imaging and Microseismic Monitoring of Mining-induced Stress Change, Pure appl. geophys. 139(3/4), 421–447.

    Article  ADS  Google Scholar 

  • Maxwell, S. C. and Young, R. P. (1993), A Comparison Between Controlled Source and Passive Source Seismic Velocity Images, Bull. Seismol. Soc. Am. 83(6), 1813–1834.

    Google Scholar 

  • Maxwell, S. C. and Young, R. P. (1996), Seismic Imaging of Rock Mass Responses to Excavation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 33(7), 713–724.

    Article  Google Scholar 

  • Mckirdy, D. M. Pettit, W. S. and Young, R. P. (1998), Thermo-elastic Modelling of Fracturing in Granite, presented at GEOSCIENCE-98, Keele, U.K.

    Google Scholar 

  • Menke, W. Geophysical Data Analysis: Discrete Inverse Theory. International Geophysics Series (San Diego, Academic Press 1989).

    MATH  Google Scholar 

  • Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (Berlin: Springer-Verlag 1996).

    MATH  Google Scholar 

  • Miettinen, K. Makela, M. M. Neittaanmaki, P. and Periaux, Evolutionary Algorithms in Engineering and Computer Science (Chichester, John Wiley and Sons Ltd 1999).

    MATH  Google Scholar 

  • Murphy, W. F. (1984), Acoustic Measures at Partial Gas Saturation in Tight Sandstones, J. Geophys. Res. 89, 11549–11559.

    Article  ADS  Google Scholar 

  • Noble, M. (1992), Nonlinear Inversion of Seismic Data. Ph.D. Thesis, Inst. de Physique du Globe de Paris.

    Google Scholar 

  • Nolet, G. Seismic Tomography (Dordrecht, D. Reidel Publishing Company 1987).

    Book  Google Scholar 

  • Nolet, G., Montelli, R., and Virieux, J. (1999), Explicit, Approximate Expressions for the Resolution and a posteriori Covariance of Massive Tomographic Systems, Geophys. J. Int. 138(1), 36–44.

    Article  ADS  Google Scholar 

  • Parker, R. L. Geophysical Inverse Theory (New Jersey, Princeton University Press 1994).

    MATH  Google Scholar 

  • Peacock, S., Mccann, C., Sothcott, J., and Astin, T. R. (1994), Experimental Measurement of Seismic Attenuation in Microfractured Sedimentary Rock, Geophysics, 59, 1342–1351.

    Article  ADS  Google Scholar 

  • Pendock, N. (1993), Bayesian image reconstruction, In Proceedings of the 8th Scandinavian Conference on Image Analysis. (NOBIM-Norwegian Soc. Image Process and Pattern Recognition) vol. 1, pp. 573–578.

    Google Scholar 

  • Pettit, W. (1997), The Evaluation of a Transducer’s Azimuthal Response Using an Aluminium Half-cylinder, Technical Report, Keele University.

    Google Scholar 

  • Ribodetti, A., and Virieux, J. (1998), Asymptotic Theory for Imaging the Attenuation Factor Q, Geophysics, 63(5), 1767–1778.

    Article  ADS  Google Scholar 

  • Rowbotham, P. S., and Pratt, R. G. (1997), Improved Inversion Through Use of the Null Space Geophysics, 62(3), 869–883.

    Article  ADS  Google Scholar 

  • Scales, J., Gersztenkorn, A., andTreitelS. (1988), Fast 1 p Solution of Large, Sparse, Linear Systems: Application to Seismic Travel Time Tomography, J. Comp. Phys. 75, 314–333.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scales, J. and Smith, M. (1995), Introductory Geophysical Inverse Theory, Technical Report, Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado.

    Google Scholar 

  • Sen, M. and Stoffa, P. L. Global Optimization Methods in Geophysical Inversion (Amsterdam, Elsevier Science 1995).

    MATH  Google Scholar 

  • Shatilo, A. P., Sondergeld, C., and Rai, C. S. (1998), Ultrasonic Attenuation in Glenn Pool Rocks, Northeastern Oklahoma,Geophysics, 63(2), 465–478.

    Article  ADS  Google Scholar 

  • Siata, R. (1999), Accuracy and Effectivity of Delimination Methods of Field of Seismic Waves Attenuation in Coal Seam (Practical Example). In Acta Montana.

    Google Scholar 

  • Tarantola, A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation (Amsterdam, Elsevier 1987).

    MATH  Google Scholar 

  • Tarantola, A., and Vallete, B. (1982), Inverse Problems = Quest for Information, J. Geophys. 50, 159–170.

    Google Scholar 

  • Thomsen, L. (1986), Weak Elastic Anisotropy, Geophysics, 51, 1954–1966.

    Article  ADS  Google Scholar 

  • Wang, B. and Braile, L. W. (1996), A multi-scale approach for seismic tomography. In International Conference on Image Processing, (ed. I. S. P. Soc.), vol. 2, pp. 713–716.

    Google Scholar 

  • Watanabe, T. (1997), Full-waveform seismic tomography based on the acoustic and elastic wave-equation. In Proceedings of ISEEG’97 Conference, ISEEG, pp. 93–98.

    Google Scholar 

  • Watanabe, T. and Sassa, K. (1996), Seismic attenuation tomography by use of amplitude attenuation and pulse broadening. In Expanded Abstract of 63rd SEG Meeting,pp. 33–36.

    Google Scholar 

  • Watanabe, T., and Sassa, K. (1996), Seismic Attenuation Tomography and its Application to Rock-mass Evaluation, Int. J. Rock Mech. MM. Sci. and Geomech. Abstr. 33(5), 467–477.

    Article  Google Scholar 

  • Wessel, P., and Smith, W. H. F. (1998), New, Improved Version of the Generic Mapping Tools Released, EOS, Trans. AGU, 79, 579.

    Article  ADS  Google Scholar 

  • Whitley, D. Mathias, K. and Fitzhorn, P. (1991), Delta coding: An iterative search strategy for genetic algorithms. In Proc. of the Fourth International Conference on Genetic Algorithms.

    Google Scholar 

  • Wielandt, E. (1987), On the validity of the ray approximation for interpreting delay times. In Seismic Tomography with Application in Global Seismology and Exploration Geophysics (ed. Nolet, G.) (Dordrecht: D. Reidel Publishing Company) pp. 85–99.

    Google Scholar 

  • Williamson, P. R. (1990), Tomographic Inversion in Reflection Seismology, Geophys. J. Int. 100, 255–274.

    Article  ADS  Google Scholar 

  • Williamson, P. R. (1991), A Guide to the Limits of Resolution Imposed by Scattering in Ray Tomography, Geophys. 56(2), 202–207.

    Article  Google Scholar 

  • Yao, Z. S., Roberts, R. G., and Tryggvason, A. (1999), Calculating Resolution and Covariance Matrices for Seismic Tomography with the LSQR Method, Geophys. J. Int. 138, 886–894.

    Article  ADS  Google Scholar 

  • Young, R. P., and Hill, J. J. (1986), Seismic Attenuation Spectra in Rock Mass Characterization; a Case Study in Open-pit Mining, Geophys. 51, 302–332.

    Article  Google Scholar 

  • Young, R. P., and Maxwell, S. C. (1992), Seismic Characterization of a Highly Stressed Rock Mass Using Tomographic Imaging and Induced Seismicity, J. Geophys. Res. 97(B9), 12361–12373.

    Article  ADS  Google Scholar 

  • Zhou, R., Tajima, F., and Stoffa, P. L. (1995), Application of Genetic Algorithms to Constrain Near-source Velocity Structure for 1989 Sihuan Earthquakes, Bull. Seismol. Soc. Am. 85(2), 590–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Dȩbski, W., Young, R.P. (2002). Tomographic Imaging of Thermally Induced Fractures in Granite Using Bayesian Inversion. In: Trifu, C.I. (eds) The Mechanism of Induced Seismicity. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8179-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8179-1_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6653-7

  • Online ISBN: 978-3-0348-8179-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics