Skip to main content

High-resolution Mechanics of a Microearthquake Sequence

  • Chapter
The Mechanism of Induced Seismicity

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Unique data from microseismic (MS) and acoustic emission (AE) systems monitoring a common rock volume have been analyzed from the Underground Research Laboratory in Canada. The two 16 sensor systems were installed to investigate stress-induced microcracking around clay and concrete bulkheads as part of the Tunnel Sealing Experiment. Single and double MS events are found to be spatially associated with clusters of between 19-86 higher frequency AE events. Each AE cluster is elongated with the longest axis between 15 and 50 cm. The AE events occurring before the associated MS event are termed foreshocks, and for two of the three analyzed AE clusters an acceleration in the AE frequency and cumulative magnitude occurs upto the time of the MS event, however with one AE cluster very few foreshocks are recorded, possibly indicating a more homogeneous failure plane. Time independent moment tensors were determined with the MS events showing significant deviatoric sources. The majority of the AE events have deviatoric mechanisms with a few crack opening and crack closure type events also determined. This study highlights the benefits of using small-scale seismic systems to investigate the temporal fracture mechanics of microcrack formation, and allows comparisons with larger more damaging seismicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., and Richards, P. G., Quantitative Seismology: Theory and Methods (W. H. Freeman and Co., New York 1980).

    Google Scholar 

  • Baker, C., and Young, R. P. (1997), Evidence for Extensile Crack Initiation in Point Source Time-dependent Moment Tensor Solutions, Bull. Seismol. Soc. Am. 87,1442–1453.

    Google Scholar 

  • Brehm, D. J., and Braile, L. W. (1998), Intermediate-term Earthquake Prediction Using Precursory Events in the New Madrid Seismic Zone, Bull. Seismol. Soc. Am. 88,564–580.

    Google Scholar 

  • Collins, D. S., and Young, R. P. (2000), Lithological Controls on Seismicity in Granitic Rocks,Bull. Seismol. Soc. Am. 90(3), 709–723.

    Article  Google Scholar 

  • Dahm, T., Manthei, G., and Eisenblatter, J. (1998), Relative Moment Tensors of Thermally Induced Microcracks in Salt Rock,Tectonophysics 289,61–74.

    Article  ADS  Google Scholar 

  • Das, S., and Scholz, C. H. (1981), Theory of Time-dependent Rupture in the Earth, J. Geophys. Res. 86, 6039–6051.

    Article  ADS  Google Scholar 

  • De Natale, G., and Zollo, A., Earthquake focal mechanisms from inversion of P and S wave motions. In Digital Seismology and Fine Modelling of the Lithosphere (eds. Cassinis, R., Nolet, G., and Panza, G. F.) (Plenum Press, New York and London 1989) pp. 399–419.

    Google Scholar 

  • Dodge, D. A., Beroza, G. C., and Ellsworth, W. L. (1996), Detailed Observations of California Foreshock Sequences: Implications for the Earthquake Initiation Process, J. Geophys. Res. 101, 22,371–22,392.

    Google Scholar 

  • Dziewonski, A. M., Ekström, G., and Nettles, M., Harvard Centroid-Moment tensor solutions 1976–1996: Significance of the non-double couple component. In Rockbursts and Seismicity in Mines (eds. Gibowicz and Lasocki) (Balkema, Rotterdam 1997) pp. 3–16.

    Google Scholar 

  • Dzix, E. J. (1997), The Potential for Crack Formation Around the URL’s Tunnel Sealing Experiment Test Tunnel,Internal Report to Atomic Energy of Canada Limited, AECL-11582.

    Google Scholar 

  • Esg, (2000), HYPERION Hardware and Software User’s Guide Version 6.0, Engineering Seismology Group Inc., Kingston, Canada.

    Google Scholar 

  • Feignier, B., and Young, R. P. (1992), Moment Tensor Inversion of Induced Microseismic Events: Evidence of Non-Shear Failures in the —4 < M < —2 Moment Magnitude Range,Geophys. Res. Lett. 19, 1503–1506.

    Article  ADS  Google Scholar 

  • Feustel, A. J. (1995), Seismic Attenuation in Underground Mines: Measurement Techniques and Applications to Site Characterization, Ph.D. Thesis, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Gephart, J. W., and Forsyth, D. W. (1984), An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence, J. Geophys. Res. 89(B11), 9305–9320.

    Article  ADS  Google Scholar 

  • Harris, R. A. (1998), Stress Triggers, Stress Shadows, and Implications for Seismic Hazard, J. Geophys, Res. 103,24,347–24,358.

    Google Scholar 

  • Hudson, J. A., Pearce, R. G., and Rogers, R. M. (1989), Source Type Plot for Inversion of the Moment Tensor, J. Geophys. Res. 94,765–774.

    Article  ADS  Google Scholar 

  • Jost, M. L., and Herrmann, R. B. (1989), A Student’s Guide to and Review of Moment Tensors, Seis. Res. Lett. 60, 37–57.

    Google Scholar 

  • Kranz, R. L., and Estey, L. H., Listening to a mine relax for over a year at 10 to 1000 meter scale. In Proc 2nd North American Rock Mechanics Symposium (Balkema 1996) pp. 491–498.

    Google Scholar 

  • Martin, C. D. (1993), The Strength of Massive Lac du Bonnet Granite Around Underground Openings, Ph.D. Thesis, University of Manitoba, Winnipeg, Canada.

    Google Scholar 

  • Martino, J. B., and Chandler, N. A., Rock mechanics and the construction of the tunnel sealing experiment. In Rock Mechanics for Industry (eds. Amadei, B., Kranz, R. L., Scott, G. A., and Smeallie, P. H.) (Balkema 1999) pp. 885–892.

    Google Scholar 

  • McGarr, A., and Simpson, D., A broad look at induced and triggered seismicity. In Rockbursts and Seismicity in Mines (ed. Gibowicz, and Lasocki) (Balkema 1997) pp. 385–396.

    Google Scholar 

  • McGarr, A. (1994), Some Comparisons Between Mining-induced and Laboratory Earthquakes, Pure appl. geophys. 142, 467–489.

    Article  ADS  Google Scholar 

  • McGarr, A. (1993), Moment Tensors of 10 Witwatersrand Mine Tremors, Pure appl. geophys. 139,781–800.

    Article  ADS  Google Scholar 

  • McKenzie, D. P. (1969), The Relation Between Fault Plane Solutions for Earthquakes and the Directions of the Principal Stresses, Bull. Seismol. Soc. Am. 59(2), 591–601.

    Google Scholar 

  • Ohtsu, M. (1991), Simplified Moment Tensor Analysis and Unified Decomposition of Acoustic Emission Source: Application to In Situ Hydrofracturing Test, J. Geophys. Res. 96, 6211–6221.

    Article  ADS  Google Scholar 

  • O’Connell,D.R.H., and Johnson, L. R. (1988), Second-order Moment Tensors of Microearthquakes at the Geysers Geothermal Field,California, Bull. Seismol. Soc. Am. 78, 1674–1692.

    Google Scholar 

  • PAC (1997), Physical Acoustics Corporation Acoustic Emission Sensors Product Bulletin.

    Google Scholar 

  • Pettitt, W. S. (1998), Acoustic Emission Source Studies of Microcracking in Rock, Ph.D. Thesis, Keele University, Keele, UK.

    Google Scholar 

  • Potyondy, D. O., and Cundall, P. A., Modelling notch formation mechanisms in the URL mine-by test tunnel using bonded assemblies of circular particles. In Proc. 3rd North American Rock Mechanics Symposium (Balkema 1998).

    Google Scholar 

  • Spottiswoode, S. M., Source mechanism of mine tremors at Blyvooruitzicht Gold Mine. In Rockbursts and Seismicity in Mines (eds. Gay, N. C., and Wainwright, E. H.) (Johannesburg 1984), pp. 29–37.

    Google Scholar 

  • Stump, B. W., and Johnson, L. R. (1977), The Determination of Source Properties by the Linear Inversion of Seismograms, Bull. Seismol. Soc. Am. 67, 1489–1502.

    Google Scholar 

  • Urbancic, T. I., Trifu, C.-I., Mercer, R. A., Feustel, A. J., and Alexander, J. A. G. (1996), Automatic Time-domain Calculation of Source Parameters for the Analysis of Induced Seismicity, Bull. Seismol. Soc. Am. 86(5), 1627–1633.

    Google Scholar 

  • Varnes, D. J. (1989), Predicting Earthquakes by Analyzing Acceleration Precursory Seismic Activity,Pure appl. geophys. 130, 661–686.

    Article  ADS  Google Scholar 

  • Young, R. P., and Collins, D. S., Monitoring an experimental tunnel seal in granite using acoustic emission and ultrasonic velocity. In Rock Mechanics for Industry (eds. Amadei, B., Kranz, R. L., Scott, G. A., and Smeallie, P. H.) (Balkema 1999) pp. 869–876.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Collins, D.S., Pettitt, W.S., Young, R.P. (2002). High-resolution Mechanics of a Microearthquake Sequence. In: Trifu, C.I. (eds) The Mechanism of Induced Seismicity. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8179-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8179-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6653-7

  • Online ISBN: 978-3-0348-8179-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics