Skip to main content

Part of the book series: Progress in Mathematical Physics ((PMP,volume 22))

  • 1383 Accesses

Abstract

There are many situations in which the forces acting among the particles are long-range and thus the effect of collisions (short-range interactions) can be neglected with respect to the averaged action of several particles at distance. One well-known case arises with charged particles in a plasma or in a semiconductor; in the second case the short-range interactions are with the impurities (including thermal vibrations) of the lattice and usually cannot be neglected, but there are several situations in plasma physics where the mean electromagnetic field plays a much more important role than the interparticle collisions. In the non-relativistic case this is dealt with via the force term in the left-hand side of the collisionless Boltzmann equation; the electric field is assumed to possess a potential which is computed via the Poisson equation, where the charge density is determined by the integral of the distribution function with respect to momentum. This produces a nonlinear system which is called the Vlasov—Poisson system. If the electric field is expressed as an integral with respect to space coordinates via the Green’s function and substituted into the collisionless Boltzmann equation, we obtain a non-linear equation, usually called the Vlasov equation. We shall call the Vlasov equation, generally speaking, the collisionless Boltzmann equation in which the force term depends on fields which in turn are determined by field equations containing the distribution function in the source term. When both the mean field and the collisions are taken into account (as in semiconductors) one talks of the Boltzmann-Vlasov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bartnik and J. McKinnon, Particlelike solutions of the Einstein—Yang—Mills equationsPhys. Rev. Lett. 61, 141–143 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  2. C. K. Birdsall and A. B. LangdonPlasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  3. G. D. BirkhoffRelativity and Modern Physics, (Harvard University Press, Cambridge, 1927).

    Google Scholar 

  4. M. W. Choptuik, Universality and scaling in the gravitational collapse of a scalar fieldPhys. Rev. Lett. 70, 9–12 (1993).

    Article  ADS  Google Scholar 

  5. M. W. Choptuik, T. Chmaj and P. Bizorí, Critical behaviour in gravitational collapse of a Yang—Mills fieldPhys. Rev. Lett. 77, 424–427 (1996).

    Article  ADS  Google Scholar 

  6. D. Christodoulou, Violation of cosmic censorship in the gravitational collapse of a dust cloudCommun. Math. Phys. 93, 171–195 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Christodoulou, The problem of a self-gravitating scalar fieldCommun. Math. Phys. 105, 337–361 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Christodoulou, A mathematical theory of gravitational collapseCommun. Math. Phys. 105, 337–361 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Christodoulou, The formation of black holes and singularities in spherically symmetric gravitational collapseCommun. Pure Appl. Math. 44, 339–373 (1987).

    Article  MathSciNet  Google Scholar 

  10. D. Christodoulou, Examples of naked singularity formation in the gravitational collapse of a scalar fieldAnn. Math. 140607–653 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Christodoulou, The instability of naked singularities in the gravitational collapse of a scalar field, Preprint.

    Google Scholar 

  12. R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov—Maxwell systemsCommun. Pure Appl. Math. 42, 729–757 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Eardley, E. Liang and R. Sachs, Velocity dominated singularities in irrotational dust cosmologiesJ. Math. Phys. 1399–106 (1972).

    Article  ADS  Google Scholar 

  14. C. R. Evans and J. S. Coleman, Critical phenomena and self-similarity in gravitational collapse of radiation fluidPhys. Rev. Lett. 721782–1785 (1994).

    Article  ADS  Google Scholar 

  15. E. D. Fackerell, Relativistic stellar dynamicsAp. J 153 643–660 (1968).

    Article  ADS  Google Scholar 

  16. T. Makino, On spherically symmetric stellar models in general relativityJ. of Math. of Kyoto Univ. 38 55–69 (1998).

    MathSciNet  MATH  Google Scholar 

  17. R. Penrose, Gravitational collapse: the role of general relativityNuovo Cimento B 1,252–276 (1969).

    Google Scholar 

  18. L. I. Petrich, S. L. Shapiro and S. A. Teukolsky, Oppenheimer—Snyder collapse with maximal time slicingPhys. Rev. D 31 2459–2469 (1985).

    Article  ADS  Google Scholar 

  19. L. I. Petrich, S. L. Shapiro and S. A. Teukolsky, Oppenheimer—Snyder collapse in polar time slicingPhys. Rev. D 33 2100–2110 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Pfaffelmoser, Global classical solutions of the Vlasov—Poisson system in three-dimensions for general initial dataJ. Diff. Eqns. 95 281–303 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Rein, Stationary and static solutions of the spherically symmetric VlasovEinstein systemMath. Proc. Camb. Phil. Soc. 115 559–570 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Rein, Cosmological solutions of the Vlasov—Einstein system with spherical, plane, and hyperbolic symmetryMath. Proc. Camb. Phil. Soc. 119 739–762 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov—Einstein system with small initial dataCommun. Math. Phys. 150 561–583 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. G. Rein and A. D. Rendall, Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamicsMath. Proc. Camb. Phil. Soc. 128363–380, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Rein, A. D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherically symmetric Vlasov—Einstein systemCommun. Math. Phys. 168 467–478 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. G. Rein, A. D. Rendall and J. Schaeffer, Critical collapse of collisionless matter — a numerical investigationPhys. Rev. D 58, 44007 (1998).

    Article  ADS  Google Scholar 

  27. A. D. Rendall, Cosmic censorship and the Vlasov equation, Class. Quantum Gray.9, L99—L104 (1992).

    Google Scholar 

  28. A. D. Rendall, An introduction to the Einstein—Vlasov systemBanach Center Publications 41, 35–68 (1997).

    MathSciNet  Google Scholar 

  29. S.L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. I. Motivation and numerical methodAp. J 298 34-57 (1985).

    Article  ADS  Google Scholar 

  30. S. L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. II. Physical applicationsAp. J 298 58-79 (1985).

    Article  ADS  Google Scholar 

  31. S.L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. IV. Collapse of a stellar cluster to a black holeAp. J. 307 575-592 (1986).

    Article  ADS  Google Scholar 

  32. J. A. Smoller, A. G. Wasserman, A. G. Yau and J. B. McLeod, Smooth static solutions of the Einstein—Yang—Mills equationsCommun. Math. Phys. 143 115-147 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. H. F. Tooper, Adiabatic fluid spheres in general relativityAp. J. 142 1541–1562 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Yodzis, H-J. Seifert and H. Müller zum Hagen, On the occurrence of naked singularities in general relativity, Commun. Math. Phys.34 135–148 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Birkhäuser Verlag

About this chapter

Cite this chapter

Cercignani, C., Kremer, G.M. (2002). The Vlasov Equation and Related Systems. In: The Relativistic Boltzmann Equation: Theory and Applications. Progress in Mathematical Physics, vol 22. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8165-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8165-4_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9463-0

  • Online ISBN: 978-3-0348-8165-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics