Universal Abelian Covers of Surface Singularities

  • Walter D. Neumann
  • Jonathan Wahl
Part of the Trends in Mathematics book series (TM)


We discuss the evidence for and implications of a conjecture that the universal abelian cover of a ℚ-Gorenstein surface singularity with finite local homology (i.e., the singularity link is a ℚ-homology sphere) is a complete intersection singularity.

2000 Mathematics Subject Classification

32S25, 14J17, 14B05, 57N10 

Key words and phrases

Gorenstein surface singularity complete intersection singularity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Eisenbud and W. D. Neumann, Three-dimensional link theory and invariants of plane curve singularities. Ann. Math. Stud. 110, Princeton. Princeton Univ. Press (1985).Google Scholar
  2. [2]
    F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Translated by George Gavin Morrice. Second andrevised ed. (Dover Publications, Inc., New York, NY, 1956).Google Scholar
  3. [3]
    H. B. Laufer, On minimally elliptic singularities. Amer. J. Math. 99 (1977), 1257–1295.Google Scholar
  4. [4]
    J. Milnor, On the 3-dimensional Brieskorn manifold M(p, q, r), Papers dedicated to the memory of R.H. Fox, Ann. Math. Studies 84, 175–225 (Princeton U. Press, 1975)Google Scholar
  5. [5]
    A. Némethi, Weakly elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999), 145–167.zbMATHGoogle Scholar
  6. [6]
    W.D. Neumann, Brieskorn complete intersections and automorphic forms, Invent. Math. 42 (1977) 285–293.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    W.D. Neumann, A calculus for plumbing applied to the topology of complex surface sin-gularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299–343.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    W.D. Neumann, Abelian covers of quasihomogeneous surface singularitiesSingularities Ar- cata 1981Proc. Symp. Pure Math. 40 (Amer. Math. Soc. 1983), 233–243.Google Scholar
  9. [9]
    W.D. Neumann, J. Wahl, Casson invariant of links of singularities, Comment. Math. Hely. 65 (1990), 58–78.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    W.D. Neumann, J. Wahl, Universal abelian covers of quotient-cusps. (preprint).Google Scholar
  11. [11]
    W.D. Neumann, J. Wahl, Complete intersection singularities with integral homology sphere links (in preparation).Google Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Walter D. Neumann
    • 1
  • Jonathan Wahl
    • 2
  1. 1.Department of Mathematics, Barnard CollegeColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsThe University of North CarolinaChapel HillUSA

Personalised recommendations