Advertisement

Sectional Singularities and Geometry of Families of Planar Quadratic Forms

  • J. W. Bruce
  • V. V. Goryunov
  • V. M. Zakalyukin
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We show that, for hypersurface sections (in the sense of Damon) of isolated functions singularities, the Tjurina and Milnor numbers coincide. An application of this to the families of 2 × 2 symmetric and arbitrary matrices proves the conjectures naturally arising from the results of [2] and [3]. In addition, we study the vanishing homology of the determinantal curves of two-parameter families of symmetric order 2 matrices and construct Dynkin diagrams of simple singularities of such families.

Keywords

Symmetric Matrice Betti Number Dynkin Diagram Short Cycle Sectional Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps, Vol.Il, Monographs in Mathematics, 83 (1988), Birkhäuser, Boston.CrossRefGoogle Scholar
  2. [2]
    J. W. Bruce and F. Tari, Families of symmetric matrices, preprint, 1999.Google Scholar
  3. [3]
    J. W. Bruce and F. Tari, Families of square matrices, preprint, 2000.Google Scholar
  4. [4]
    J. Damon, A-equivalence and the equivalence of sections of images and discriminants, in: Singularity Theory and its Applications (Warwick 1989), part 1, Lecture Notes in Math., 1462 (1991),Springer, Berlin, 93–121.Google Scholar
  5. [5]
    J. Damon, Higher multiplicities and almost free divisors and complete intersections, Mem. Amer. Math. Soc., 123 (1996), no. 589.MathSciNetGoogle Scholar
  6. [6]
    J. Damon and D. Mond, A-codimension and the vanishing topology of discriminants, Invent. Math., 106 (1991), 217–242.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Frühbis-Krueger, Klassifikation einfacher Raumkurvensingularitäten,Diplomarbeit, Universität Kaiserslautern, 1997.Google Scholar
  8. [8]
    V. V. Goryunov, Functions on space curves, J. London Math. Soc., (2) 61 (2000), 807–822.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C. Huneke, Numerical invariants of liaison classes, Invent. Math., 75 (1984), 301–325.MathSciNetzbMATHGoogle Scholar
  10. [10]
    C. Huneke, The Koszul homology of an ideal, Adv. in Math., 56 (1985), 295–318.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    B. Z. Shapiro, Normal forms of the Whitney umbrella with respect to a cone-preserving contact group, Funct. Anal. Appl., 31 (1997), 144–147.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • J. W. Bruce
    • 1
  • V. V. Goryunov
    • 1
  • V. M. Zakalyukin
    • 2
  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Mechanics and MathematicsMoscow Lomonosov State UniversityMoscowRussia

Personalised recommendations