Skip to main content

Orthogonal Polynomials Satisfying Higher Order Differential Equations

  • Chapter
Hilbert Space, Boundary Value Problems and Orthogonal Polynomials

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 133))

  • 490 Accesses

Abstract

There are various possible iterative schemes available to produce differential equations of any even order. Multiples of the second order operators, fourth order operators and sixth order operators will generate a host of examples [10], but these “do not count” in a sense. Indeed their spectral resolutions all look like

$$A = \int {{{\lambda }^{n}}dE(\lambda )}$$

where n > 1, and E(λ) is the spectral measure for the lowest order operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bavinck, Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions, J. Comp. Appl. Math., to appear.

    Google Scholar 

  2. —, Differential operators having Sobolev-type Laguerre polynomials as eigenfunctions Proc. Amer. Math. Soc. 125 (1997), 3561–3567.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Bavinck and J. Koekoek, Differential operators having symmetric orthogonal polynomials as eigenfunctions.

    Google Scholar 

  4. W. N. Everitt, L. L. Littlejohn and R. Wellman, The symmetric form of Koekoeks’ Laguerre-type differential equations, J. Comp. Appl. Math., 57 (1995), 115–121.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Koekoek and R. Koekoek, On a differential equation for Koomwinder’s generalized Laguerre polynomials, Proc. Amer. Math. Soc. 4 (1991), 1045–1054.

    MathSciNet  Google Scholar 

  6. J. Koekoek, R. Koekoek and H. Bavinck, On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc. 350 (1998), 347–393.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Koekoek, Differential equations for symmetric generalized ultra spherical polynomials, Trans. Amer. Math. Soc. 345 (1994), 47–72.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. H. Koornwinder, Orthogonal polynomials with a weight function (1-x)α(1 + x)β + Mδ(x) = 1 + Nδ(x-1), Canad. Math. Bull. 27 (1984), 205–214.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. L. Littlejohn and A. M. Krall, Sturm-Liouville operators and orthogonal polynomials, CMS Conf. Proc. 8 (1986), 247–260.

    MathSciNet  Google Scholar 

  10. L. L. Littlejohn, The Krall polynomials as solutions to a second order differential equation, Canad. Math. Bull. 26 (1983), 410–417.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Krall, A.M. (2002). Orthogonal Polynomials Satisfying Higher Order Differential Equations. In: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Operator Theory: Advances and Applications, vol 133. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8155-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8155-5_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9459-3

  • Online ISBN: 978-3-0348-8155-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics