Skip to main content

Flow Matching by Shape Design for the Navier-Stokes System

  • Conference paper
Optimal Control of Complex Structures

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 139))

  • 316 Accesses

Abstract

We consider a simple shape design problem for the Navier-Stokes system in two-dimensions. The shape of part of the boundary is determined so that flow matches, as well as possible, a given flow. An optimality system is derived and the adjoint equation method is used to determine the shape gradient of the design functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adams, Sobolev Spaces,Academic, New York (1975).

    MATH  Google Scholar 

  2. V. Alekseev, V. Tikhomirov, and S. Fomin, Optimal Control, Consultants Bureau, New York (1987).

    MATH  Google Scholar 

  3. G. Armugan and O. Pironneau, On the problem of riblets as a drag reduction device, Optim. Control Appl. Meth., 10 (1989), 93–112.

    Article  Google Scholar 

  4. E. Dean, Q. Dinh, R. Glowinski, J. He, T. Pan and J. Periaux, Least squares domain embedding methods for Neumann problems: applications to fluid dynamics, in Domain Decomposition Methods for Partial Differential Equations, D. Keyes, et al., Eds., SIAM, Philadelphia, (1992).

    Google Scholar 

  5. N. Di Cesare, O. Pironneau, and E. Polak, Consistent approximations for an optimal design problem, Report 98005 Labotatoire d’Analyse Numérique, Paris, (1998).

    Google Scholar 

  6. V. Girault and P. Raviart, The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Springer, New York, (1986).

    Book  Google Scholar 

  7. R. Glowinski and O. Pironneau, Toward the computation of minimum drag profile in viscous laminar flow, Appl. Math. Model., 1 (1976), 58–66.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, Math. Model. Numer. Anal., 25 (1991), 711–748.

    MathSciNet  MATH  Google Scholar 

  9. M. Gunzburger and H. Kim, Existence of a shape control problem for the stationary Navier-Stokes equations, SIAM J. Cont. Optim., 36 (1998), 895–909.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gunzburger, H. Kim, and S. Manservisi, On a shape control problem for the stationary Navier-Stokes equations, to appear in Math.Model. Numer. Anal.

    Google Scholar 

  11. M. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed control, SIAM J. Cont. Optim., 37 (1999), 1913–1945.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gunzburger and S. Manservisi, A variational inequality formulation of an inverse elasticity problem, to appear in Comp. Meth. Appl. Mech. Engrg.

    Google Scholar 

  13. O. Pironneau, Optimal Shape Design in Fluid Mechanics, Thesis, University of Paris, Paris, (1976).

    Google Scholar 

  14. O. Pironneau, On optimal design in fluid mechanics, J. Fluid. Mech., 64 (1974), 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, Berlin, (1984).

    Book  MATH  Google Scholar 

  16. J. Simon, Domain variation for drag Stokes flows, in Lecture notes in Control and Information Sciences 114, A. Bermudez, Ed., Springer, Berlin, (1987), 277–283.

    Google Scholar 

  17. T. Slawig, Domain Optimization for the Stationary Stokes and Navier-Stokes Equations by Embedding Domain Technique, Thesis, TU Berlin, Berlin, (1998).

    Google Scholar 

  18. S. Stojanovic, Non-smooth analysis and shape optimization in flow problems, IMA Preprint Series 1046, IMA, Minneapolis, 1992.

    Google Scholar 

  19. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, (1979).

    MATH  Google Scholar 

  20. V. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems, Wiley, Chichester, (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Gunzburger, M., Manservisi, S. (2001). Flow Matching by Shape Design for the Navier-Stokes System. In: Hoffmann, KH., Lasiecka, I., Leugering, G., Sprekels, J., Tröltzsch, F. (eds) Optimal Control of Complex Structures. ISNM International Series of Numerical Mathematics, vol 139. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8148-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8148-7_23

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9456-2

  • Online ISBN: 978-3-0348-8148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics