Skip to main content

P-wave Tomography in Inhomogeneous Orthorhombic Media

  • Chapter
Seismic Waves in Laterally Inhomogeneous Media

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 301 Accesses

Abstract

A P-wave tomographie method for 3-D complex media (3-D distribution of elastic parameters and curved interfaces) with orthorhombic symmetry is presented in this paper. The technique uses an iterative linear approach to the nonlinear travel-time inversion problem. The hypothesis of orthorhombic anisotropy and 3-D inhomogeneity increases the set of parameters describing the model dramatically compared to the isotropic case. Assuming a Factorized Anisotropic Inhomogeneous (FAI) medium and weak anisotropy, we solve the forward problem by a perturbation approach. We use a finite element approach in which the FAI medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, analytical expressions for rays and travel times, valid to first-order, are given for P waves in orthorhombic inhomogeneous media. More complex media can be modeled by introducing interfaces separating FAI media with different elastic properties. Simple formulae are given for the Frùchet derivatives of the travel time with respect to the elastic parameters and the interface parameters. In the weak anisotropy hypothesis the P-wave travel times are sensitive only to a subset of the orthorhombic parameters: the six P-wave elastic parameters and the three Euler angles defining the orientation of the mirror planes of symmetry. The P-wave travel times are inverted by minimizing in terms of least-squares the misfit between the observed and calculated travel times. The solution is approached using a Singular Value Decomposition (SVD). The stability of the inversion is ensured by making use of suitable a priori information and/or by applying regularization. The technique is applied to two synthetic data sets, simulating simple Vertical Seismic Profile (VSP) experiments. The examples demonstrate the necessity of good 3-D ray coverage when considering complex anisotropic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CERVEN, V. (1972), Seismic Rays and Rays Intensities in Inhomogeneous Anisotropic Media, Geophys. J. R. Astr. Soc. 29, 1–13.

    Article  Google Scholar 

  • CERVEN, V. (1989), Ray Tracing in Factorized Anisotropic Inhomogeneous Media, Geophys. J. Int. 99, 91–100.

    Article  Google Scholar 

  • CHAPMAN, C. H. and PRATT, R. G. (1992), Travel-time Tomography in Anisotropic Media I. Theory, Geophys. J. Int. 109, 1–9.

    Article  Google Scholar 

  • DE BOOR, C., A Practical Guide to Splines (Springer-Verlag, New York 1978).

    Book  Google Scholar 

  • Delprat-Jannaud, F. and Lailly, P. (1993), Ill-posed and Well-posed Formulations of the Reflection Travel-Time Tomography Problem, J. Geophys. Res. 98, 6589–6605.

    Article  Google Scholar 

  • FARRA, V. (1989), Ray Perturbation Theory for Heterogeneous Hexagonal Anisotropic Medium, Geophys. J. Int. 99, 723–738.

    Article  Google Scholar 

  • FARRA, V. (1990), Amplitude Computation in Heterogeneous Media by Ray Perturbation Theory: A Finite Element Method Approach, Geophys. J. Int. 103, 341–354.

    Article  Google Scholar 

  • FARRA, V. (1993), Ray Tracing in Complex Media, J. Appl. Geophys. 30, 55–73.

    Article  Google Scholar 

  • FARRA, V. and LE BEGAT, S. (1995), Sensitivity of qP-wave Travel Times and Polarization Vectors to Heterogeneity, Anisotropy and Interfaces, Geophys. J. Int. 121, 371–384.

    Article  Google Scholar 

  • FARRA, V. and MADARIAGA, R. (1987), Seismic Waveform Modeling in Heterogeneous Media by Ray Perturbation Theory, J. Geophys. Res. 92, 2697–2712.

    Article  Google Scholar 

  • FARRA, V. and MADARIAGA, R. (1988), Non-linear Reflection Tomography, Geophys. J. 95, 135–147.

    Article  Google Scholar 

  • GAJEWSKI, D. and PSENCÍK, I. (1990), Vertical Seismic Profile Synthetics by Dynamic Ray Tracing in Laterally Varying Layered Anisotropic Structures, J. Geophys. Res. 95, 11301–11315.

    Article  Google Scholar 

  • JECH, J. and PSENCÍK, I. (1992), Kinematic Inversion for qP- and qS-waves in Inhomogeneous Hexagonally Symmetric Structures, Geophys. J. Int. 108, 604–612.

    Article  Google Scholar 

  • LE BEGAT, S. and FARRA, V. (1997), P-wave Travel-time and polarization tomography of VSP, Geophys. J. Int. 131, 100–114.

    Article  Google Scholar 

  • MENSCH, T. and FARRA, V. (1999), Computation of P-wave Rays, Travel Times and Slowness in Orthorhombic Media, Geophys. J. Int. 138, 244–256.

    Article  Google Scholar 

  • MENSCH, T. and RASOLOFOSAON, P. (1997), Elastic-wave Velocities in Anisotropic Media of Arbitrary Symmetry — Generalization of Thomsen Parameterse, S and y, Geophys. J. Int. 128, 43–64.

    Article  Google Scholar 

  • NOLET, G., Solving large linearized tomographic problems. In Seismic Tomography, Theory and Practice (eds. Iyer, H. M. and Hirahara, K.) (Chapman and Hall, London 1993) pp. 227–247.

    Google Scholar 

  • NOWACK, R. L. and PSENCíK,1. (1991), Perturbation from Isotropic to Anisotropie Heterogeneous Media in Ray Approximation, Geophys. J. Int. 106, 1–10.

    Article  Google Scholar 

  • ORY, J. and PRATT, R. G. (1995), Are our Parameter Estimators Biased? The Significance of Finite-Difference Regularization Operators, Inverse Problems 11, 397–424.

    Article  Google Scholar 

  • PARKER, R. L., Geophysical Inverse Theory (Princeton University Press, Princeton 1994).

    Google Scholar 

  • PRATT, R. G. and CHAPMAN, C. H. (1992), Travel-time Tomography in Anisotropic Media—H. Application, Geophys. J. Int. 109, 20–37.

    Article  Google Scholar 

  • PRATT, R. G., MCGAUGHLEY, W. J., and CHAPMAN, C. H. (1993), Anisotropie Velocity Tomography: A Case Study in a Near-Surface Rock Mass, Geophysics 58, 1748–1763.

    Article  Google Scholar 

  • Psencík, I. and Gajewski, D. (1998), Polarization, Phase Velocity and NMO Velocity of qP Waves in Arbitrary Weakly Anisotropic Media, Geophysics 63, 1754–1766.

    Article  Google Scholar 

  • TARANTULA, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation (Elsevier, Amsterdam 1987).

    Google Scholar 

  • THOMSEN, L. (1986), Weak Elastic Anisotropy, Geophysics 51, 1954–1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Mensch, T., Farra, V. (2002). P-wave Tomography in Inhomogeneous Orthorhombic Media. In: Pšenčík, I., Červený, V. (eds) Seismic Waves in Laterally Inhomogeneous Media. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8146-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8146-3_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6677-3

  • Online ISBN: 978-3-0348-8146-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics