Skip to main content

Some pharmacological aspects of NMDA-mediated nociceptive transmission in the rat spinal cord as revealed by c-Fos immunocytochemistry

  • Chapter
Book cover NMDA Antagonists as Potential Analgesic Drugs

Abstract

An important facet of the somatosensory system is the ability to distinguish a broad array of stimuli, resulting in the perception of a wide range of sensations. Under normal conditions this system can differentiate between innocuous (Aβ-fibre mediated) and noxious (C-fibre mediated) stimuli, with thresholds and responses being well defined. Following a sustained peripheral injury, persistent peripheral inputs from the injury site (tissue or nerve) can lead to plasticity of the somatosensory system. Under these conditions responses/sensations evoked by different types of peripheral stimuli may be altered. Inflammation of the tissue results in a peripheral sensitisation; nociceptors at the injury site exhibit spontaneous activity, lowered thresholds and enhanced responses to suprathreshold stimuli (hyperalgesia) (see references in [1]). A consequence of these peripheral events is a sustained neuronal input from the periphery to the spinal cord that may in due course initiate events leading to the establishment of central sensitisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubner R (1997) Three decades of pain research and its control. J Dent Res 76: 730–733

    Article  PubMed  CAS  Google Scholar 

  2. Dickenson AH (1995) Central acute pain mechanisms. Ann Med 27: 223–227

    Article  PubMed  CAS  Google Scholar 

  3. Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12: 3665–3670

    PubMed  CAS  Google Scholar 

  4. Ren K, Williams GM, Hylden JL, Ruda MA, Dubner R (1992) The intrathecal administration of excitatory amino acid receptor antagonists selectively attenuated carrageenan-induced behavioural hyperalgesia in rats. Eur J Pharmacol 219: 235–243

    Article  PubMed  CAS  Google Scholar 

  5. Ren K, Hylden JL, Williams GM, Ruda MA, Dubner R (1992) The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioural hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50: 331–344

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto T, Shimoyama N, Mizuguchi T (1993) The effects of morphine, MK-801, an NMDA antagonist, and CP-96,345, an NK1 antagonist, on the hyperesthesia evoked by carrageenan injection in the rat paw. Anesthesiology 78: 124–133

    Article  PubMed  CAS  Google Scholar 

  7. Eisenberg E, LaCross S, Strassman AM (1994) The effects of the clinically tested NMDA receptor antagonist memantine on carrageenan-induced thermal hyperalgesia in rats. Eur J Pharmacol 255: 123–129

    Article  PubMed  CAS  Google Scholar 

  8. Laird JM, Mason GS, Webb J, Hill RG, Hargreaves RJ (1996) Effects of a partial ago-nist and a full antagonist acting at the glycine site of the NMDA receptor on inflammation-induced mechanical hyperalgesia in rats. Br J Pharmacol 117: 1487–1492

    Article  PubMed  CAS  Google Scholar 

  9. Okano K, Kuraishi Y, Satoh M (1998) Involvement of spinal substance P and excitato-ry amino acids in inflammatory hyperalgesia in rats. Jpn J Pharmacol 76/1: 15–22

    Article  PubMed  CAS  Google Scholar 

  10. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394: 501–527

    PubMed  CAS  Google Scholar 

  11. Morgan JI (1991) Proto-oncogene expression in the nervous system. In: Fondation pour l’étude du système nerveux (FESN) (ed): Discussions in neuroscience. Elsevier Science, Amsterdam, 9–51

    Google Scholar 

  12. Morgan JI, Curran T (1986) The role of ion flux in the control of c-fos expression. Nature 322: 552–555

    Article  PubMed  CAS  Google Scholar 

  13. Chapman V, Besson J-M (1997) Pharmacological studies of nociceptive systems using the c-Fos immunohistochemical technique: an indicator of noxiously activated spinal neurones. In: AH Dickenson, J-M Besson (eds): Handbook of experimental pharmacology: the pharmacology of pain. Springer-Verlag, Berlin Heidelberg, 235–279

    Google Scholar 

  14. Kehl LJ, Gogas KR, Lichtblau L, Pollock CH, Mayes M, Basbaum AI, Wilcox GL (1991) The NMDA antagonist MK801 reduces noxious stimulus-evoked FOS expression in the spinal cord dorsal horn. In: MR Bond, JE Charlton, CJ Woolf (eds): Proceedings of the VIth world congress on pain. Elsevier Science, Amsterdam, 307–311

    Google Scholar 

  15. Elliott KJ, Brodsky M, Hynansky AD, Foley KM, Inturrisi CE (1995) Dextromethorphan suppresses both formalin-induced nociceptive behaviour and the formalin-induced increase in spinal cord c-fos mRNA. Pain 61: 401–409

    Article  PubMed  CAS  Google Scholar 

  16. Tölle TR, Castro-Lopes JM, Evan G, Zieglgänsberger W (1991) C-fos induction in the spinal cord following noxious stimulation: prevention by opiates but not by NMDA antagonists. In: MR Bond, JE Charlton, CJ Woolf (eds): Proceedings of the VIth world congress on pain. Elsevier Science, Amsterdam, 299–305

    Google Scholar 

  17. Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111: 544–547

    CAS  Google Scholar 

  18. Honoré P, Buritova J, Besson J-M (1995) Carrageenin-evoked c-Fos expression in rat lumbar spinal cord: the effects of indomethacin. Eur J Pharmacol 272: 249–259

    Article  PubMed  Google Scholar 

  19. Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor – five years on. Trends Pharmacol Sci 14: 20–25

    Article  PubMed  CAS  Google Scholar 

  20. Chapman V, Honoré P, Buritova J, Besson J-M (1995) The contribution of NMDA receptor activation to spinal c-Fos expression in a model of inflammatory pain. Br J Pharmacol 116: 1628–1634

    Article  PubMed  CAS  Google Scholar 

  21. Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386: 721–724

    Article  PubMed  CAS  Google Scholar 

  22. Cumberbatch MJ, Chizh BA, Headley PM (1995) Modulation of excitatory amino acid responses by tachykinins and selective tachykinin receptor agonists in the rat spinal cord. Br J Pharmacol 115: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  23. Malcangio M, Fernandes K, Tomlinson DR (1998) NMDA receptor activation modulates evoked release of substance P from rat spinal cord. Br J Pharmacol 125: 1625–1626

    Article  PubMed  CAS  Google Scholar 

  24. Aicher SA, Sharma S, Cheng PY, Pickel VM (1997) The N-methyl-D-aspartate (NMDA) receptor is postsynaptic to substance P-containing axon terminals in the rat superficial dorsal horn. Brain Res 772: 71–81

    Article  PubMed  CAS  Google Scholar 

  25. Marvizon JCG, Martinez V, Grady EF, Bunnett NW, Mayer EA (1997) Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neurosci 17: 8129–8136

    PubMed  CAS  Google Scholar 

  26. Juranek I, Lembeck F (1997) Afferent C-fibres release substance P and glutamate. Can J Physiol Pharmacol 75: 661–664

    Article  PubMed  CAS  Google Scholar 

  27. Budai D, Larson AA (1996) Role of substance P in the modulation of C-fiber-evoked responses of spinal dorsal horn neurons. Brain Res 710: 197–203

    Article  PubMed  CAS  Google Scholar 

  28. Urban L, Thompson SWN, Dray A (1994) Modulation of spinal excitability: cooperation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 17: 432–438

    Article  PubMed  CAS  Google Scholar 

  29. Baranauskas G, Nistri A (1998) Sensitization of pain pathways in the spinal cord: Cellular mechanisms. Prog Neurobiol 54: 349–365

    Article  PubMed  CAS  Google Scholar 

  30. Rusin KI, Bleakman D, Chard PS, Randic M, Miller RJ (1993) Tachykinins potentiate N-methyl-D-aspartate responses in acutely isolated neurons from the dorsal horn. J Neurochem 60: 952–960

    Article  PubMed  CAS  Google Scholar 

  31. Rusin KI, Jiang MC, Cerne R, Randic M (1993) Interactions between excitatory amino acids and tachykinins in the rat spinal dorsal horn. Brain Res Bull 30: 329–338

    Article  PubMed  CAS  Google Scholar 

  32. Rusin KI, Ryu PD, Randic M (1992) Modulation of excitatory amino acid responses in rat dorsal horn neurons by tachykinins. J Neurophysiol 68: 265–286

    PubMed  CAS  Google Scholar 

  33. Urban L, Naeem S, Patel IA, Dray A (1994) Tachykinin induced regulation of excitatory amino acid responses in the rat spinal cord in vitro. Neurosci Lett 168: 185–188

    Article  CAS  Google Scholar 

  34. Dougherty PM, Willis WD (1991) Enhancement of spinothalamic neuron responses to chemical and mechanical stimuli following combined micro-iontophoretic application of N-methyl-D-aspartic acid and substance P. Pain 47: 85–93

    Article  PubMed  CAS  Google Scholar 

  35. Mjellem-Joly N, Lund A, Berge OG, Hole K (1992) Intrathecal co-administration of substance P and NMDA augments nociceptive responses in the formalin test. Pain 51: 195–198

    Article  PubMed  CAS  Google Scholar 

  36. Xu X-J, Dalsgaard C-J, Wiesenfeld-Hallin Z (1992) Spinal substance P and N-methylD-aspartate receptors are coactivated in the induction of central sensitisation of the nociceptive flexor reflex. Neurosci 51: 641–648

    Article  CAS  Google Scholar 

  37. Seguin L, Millan MJ (1994) The glycine B receptor partial agonist, (+)-HA966, enhances induction of antinociception by RP 67580 and CP-99,994. Eur J Pharmacol 253: R1–R3

    Article  PubMed  CAS  Google Scholar 

  38. Murray CW, Cowan A, Larson AA (1991) Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain 44: 179–185

    Article  PubMed  CAS  Google Scholar 

  39. Chapman V, Buritova J, Honore P, Besson JM (1996) Physiological contributions of neurokinin 1 receptor activation, and interactions with NMDA receptors, to inflammatory-evoked spinal c-Fos expression. J Neurophysiol 76: 1817–1827

    PubMed  CAS  Google Scholar 

  40. Rusin KI, Jiang MC, Cerne R, Kolaj M, Randic M (1994) Interactions between excitatory amino acids and tachykinins and long term changes of synaptic responses in the rat spinal cord. In: T Hökfelt, H-G Schaible, RF Schimdt (eds): Neuropeptides, nociception,and pain. Chapmanl/Hall, Weinheim, 163–199

    Google Scholar 

  41. Chapman V, Haley JE, Dickenson AH (1994) Electrophysiologic analysis of preemptive effects of spinal opioids on N-methyl-D-aspartate receptor-mediated events. Anesthesiol 81: 1429–1435

    Article  CAS  Google Scholar 

  42. Chapman V, Dickenson AH (1992) The combination of NMDA antagonism and morphine produces profound antinociception in the rat dorsal horn. Brain Res 573: 321–323

    Article  PubMed  CAS  Google Scholar 

  43. Milian MJ, Seguin L (1994) Chemically-diverse ligands at the glycine B site coupled to N-methyl-D-aspartate (NMDA) receptors selectively block the late phase of formalininduced pain in mice. Neurosci Lett 178: 139–143

    Article  Google Scholar 

  44. Honoré P, Chapman V, Buritova J, Besson J-M (1996) Concomitant administration of morphine and an N-methyl-D-aspartate receptor antagonist profoundly reduces inflammatory evoked spinal c-Fos expression. Anesthesiol 85: 150–160

    Article  Google Scholar 

  45. Yamamoto T, Yaksh TL (1992) Comparison of the antinociceptive effects of pre-and post-treatment with intrathecal morphine and MK-801, an NMDA antagonist, on the formalin test in the rat. Anesthesiol 77: 757–763

    Article  CAS  Google Scholar 

  46. Coggeshall RE, Carlton SM (1997) Receptor localization in the mammalian dorsal horn and primary afferent neurons. Brain Res Rev 24: 28–66

    Article  PubMed  CAS  Google Scholar 

  47. Dickenson AH (1994) NMDA receptor antagonists as analgesics. In: HL Fields, JC Liebeskind (eds): Progress in pain research and management. IASP Press, Seattle, 173–187

    Google Scholar 

  48. Fundytus ME, Coderre TJ (1999) Opioid tolerance and dependence. A new model highlighting the role of metabotropic glutamate receptors. Pain Forum 8: 3–13

    Article  Google Scholar 

  49. Trujillo KA, Akil H (1991) Opiate tolerance and dependence: recent findings and synthesis. New Biol 3(10): 915–923

    PubMed  CAS  Google Scholar 

  50. Bhargava HN (1994) Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome, and self-administrative behavior. Pharmacol Rev 46(3): 293–324

    PubMed  CAS  Google Scholar 

  51. Trujillo KA, Akil H (1995) Excitatory amino acids and drugs of abuse: a role for Nmethyl-D- aspartate receptors in drug tolerance, sensitization and physical dependence. Drug Alcohol Depend 38: 139–154

    Article  PubMed  CAS  Google Scholar 

  52. Herman BH, OBrien CP (1997) Clinical medications development for opiate addiction: Focus on non-opioids and opioid antagonists for the amelioration of opiate withdrawal symptoms and relapse prevention. Semin Neurosci 9: 158–172

    Article  CAS  Google Scholar 

  53. Inturrisi CE (1997) Preclinical evidence for a role of glutamatergic systems in opioid tolerance and dependence. Semin Neurosci 9: 110–119

    Article  CAS  Google Scholar 

  54. Elliott KJ, Kest B, Man A, Kao B, Inturrisi CE (1995) N-Methyl-D-Aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development. Neuropsychopharmacol 13: 347–356

    Article  CAS  Google Scholar 

  55. Pasternak GW, Kolesnikov YA, Babey AM (1995) Perspectives on the N-methyl-Daspartate/nitric oxide cascade and opioid tolerance. Neuropsychopharmacol 13: 309–313

    Article  CAS  Google Scholar 

  56. Bell JA, Beglan CL (1995) Co-treatment with MK-801 potentiates naloxone-precipitated morphine withdrawal in the isolated spinal cord of the neonatal rat. Eur J Pharmacol 294: 297–301

    Article  CAS  Google Scholar 

  57. Feng J, Kendig JJ (1995) N-methyl-D-aspartate receptors are implicated in hyperresponsiveness following naloxone reversal of alfentanil in isolated rat spinal cord. Neurosci Lett 189: 128–130

    Article  PubMed  CAS  Google Scholar 

  58. Bell JA, Beglan CL (1995) MK-801 blocks the expression but not the development of tolerance to morphine in the isolated spinal cord of the neonatal rat. Eur J Pharmacol 294: 289–296

    Article  CAS  Google Scholar 

  59. Su MT, Lin WB, Lue WM, Cheng CY, Tao P-L (1998) Blockade of the development of morphine tolerance by U-50,488, an AVP antagonist or MK-801 in the rat hippocampal slice. Br J Pharmacol 123: 625–630

    Article  PubMed  CAS  Google Scholar 

  60. Besson J-M, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67: 67–186

    PubMed  CAS  Google Scholar 

  61. Abbadie C, Honoré P, Fournié-Zaluski M-C, Roques BP, Besson J-M (1994) Effects of opioids and non-opioids on c-Fos immunoreactivity induced in rat lumbar spinal cord neurons by noxious heat stimulation. Eur J Pharmacol 258: 215–227

    Article  CAS  Google Scholar 

  62. Honoré P, Catheline G, Le Guen S, Besson J-M (1997) Chronic treatment with systemic morphine induced tolerance to the systemic and peripheral antinociceptive effects of morphine on both carrageenin induced mechanical hyperalgesia and spinal c-Fos expression in awake rats. Pain 71: 99–108

    Article  PubMed  Google Scholar 

  63. Le Guen S, Catheline G, Besson J-M (1998) Development of tolerance to the antinociceptive effect of systemic morphine at the lumbar spinal cord level: a c-Fos study in the rat. Brain Res 813: 128–138

    Article  PubMed  CAS  Google Scholar 

  64. Rohde DS, Detweiler DJ, Basbaum AI (1997) Formalin-evoked Fos expression in spinal cord is enhanced in morphine-tolerant rats. Brain Res 766: 93–100

    Article  PubMed  CAS  Google Scholar 

  65. Rohde DS, Detweiler DJ, Basbaum AI (1996) Spinal cord mechanisms of opioid tolerance and dependence: Fos-like immunoreactivity increases in subpopulations of spinal cord neurons during withdrawal. Neurosci 72: 233–242

    Article  CAS  Google Scholar 

  66. LaMotte CC, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112: 407–412

    Article  PubMed  CAS  Google Scholar 

  67. Lombard M-C, Besse D, Besson J-M (1995) Opioid receptors in the superficial layers of the rat spinal cord: functional implications in pain processing. In: F Nyberg, HS Sharma, Z Wiesenfeld-Hallin (eds): Progress in brain research: neuropeptides in the spinal cord. Elsevier Science, 77–92

    Google Scholar 

  68. Besse D, Lombard M-C, Zajac J-M, Roques BP, Besson J-M (1990) Pre-and postsynaptic distribution of t, a and x opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res 521: 15–22

    Article  PubMed  CAS  Google Scholar 

  69. Besson J-M, Le Bars D (1978) Effects of morphine on the transmission of painful messages at the spinal level. In: M Adler, L Manara, R Samanin (eds): Factors affecting the action of narcotics. Raven Press, New York, 103–124

    Google Scholar 

  70. Duggan AW, North RA (1984) Electrophysiology of opioids. Pharmacol Rev 35: 219–281

    Google Scholar 

  71. Dickenson AH (1994) Where and how do opioids act ? In: GF Gebhart, DL Hammond, TS Jensen (eds): Proceedings of the 7th world congress on pain. Progress in pain research and management. IASP Press, Seattle, 525–552

    Google Scholar 

  72. Le Guen S, Catheline G, Besson JM (1999) Effects of NMDA receptor antagonists on morphine tolerance: a c-Fos study in the lumbar spinal cord of the rat. Eur J Pharmacol 373: 1–11

    Article  PubMed  Google Scholar 

  73. Trujillo KA, Akil H (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251: 85–87

    Article  PubMed  CAS  Google Scholar 

  74. Ben-Eliyahu S, Marek P, Vaccarino AL, Mogil JS, Sternberg WF, Liebeskind JC (1992) The NMDA receptor antagonist MK-801 prevents long-lasting non-associative morphine tolerance in the rat. Brain Res 575: 304–308

    Article  PubMed  CAS  Google Scholar 

  75. Bhargava HN, Matwyshyn GA (1993) Dizocilpine (MK-801) blocks tolerance to the analgesic but not to the hyperthermic effect of morphine in the rat. Pharmacol 47: 344–350

    Article  CAS  Google Scholar 

  76. Gutstein HB, Trujillo KA (1993) MK-801 inhibits the development of morphine tolerance at spinal sites. Brain Res 626: 332–334

    Article  PubMed  CAS  Google Scholar 

  77. Tiseo PJ, Cheng J, Pasternak GW, Inturrisi CE (1994) Modulation of morphine tolerance by the competitive N-Methyl-D-Aspartate receptor antagonist LY274614: assessment of opioid receptor changes. J Pharmacol Exp Ther 268: 195–201

    PubMed  CAS  Google Scholar 

  78. Trujillo KA, Akil H (1994) Inhibition of opiate tolerance by non-competitive N-methylD-aspartate receptor antagonists. Brain Res 633: 178–188

    Article  PubMed  CAS  Google Scholar 

  79. Bilsky EJ, Inturrisi CE, Sadée W, Hruby VJ, Porreca F (1996) Competitive and non-competitive NMDA antagonists block the development of antinociceptive tolerance to morphine, but not to selective t or S opioid agonists in mice. Pain 68: 229–237

    Article  PubMed  CAS  Google Scholar 

  80. Dunbar SA, Yaksh TL (1996) Concurrent spinal infusion of MK801 blocks spinal tolerance and dependence induced by chronic intrathecal morphine in the rat. Anesthesiol 84: 1177–1188

    Article  CAS  Google Scholar 

  81. Lutfy K, Shen K-F, Woodward RM, Weber E (1996) Inhibition of morphine tolerance by NMDA receptor antagonists in the formalin test. Brain Res 731: 171–181

    Article  PubMed  CAS  Google Scholar 

  82. Manning BH, Mao JR, Frenk H, Price DD, Mayer DJ (1996) Continuous co-administration of dextromethorphan or MK-801 with morphine: attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance. Pain 67: 79–88

    Article  PubMed  CAS  Google Scholar 

  83. Bhargava HN (1997) Enhancement of morphine actions in morphine-naive and morphine-tolerant mice by LY 235959, a competitive antagonist of the NMDA receptor. Gen Pharmacol 28: 61–64

    Article  PubMed  CAS  Google Scholar 

  84. Gonzalez P, Cabello P, Germany A, Norris B, Contreras E (1997) Decrease of tolerance to, and physical dependence on morphine by, glutamate receptor antagonists. Eur J Pharmacol 332: 257–262

    Article  PubMed  CAS  Google Scholar 

  85. Belozertseva IV, Bespalov AY (1998) Effects of NMDA receptor channel blockers, dizocilpine and memantine, on the development of opiate analgesic tolerance induced by repeated morphine exposures or social defeats in mice. Naunyn Schmiedebergs Arch Pharmacol 358: 270–274

    Article  PubMed  CAS  Google Scholar 

  86. McNally GP, Westbrook RF (1998) Effects of systemic, intracerebral, or intrathecal administration of an N-methyl-D-aspartate receptor antagonist on associative morphine analgesic tolerance and hyperalgesia in rats. Behav Neurosci 112: 966–978

    Article  PubMed  CAS  Google Scholar 

  87. Mao JR, Price DD, Lu J, Mayer DJ (1998) Antinociceptive tolerance to the mu-opioid agonist DAMGO is dose-dependently reduced by MK-801 in rats. Neurosci Lett 250: 193–196

    Article  PubMed  CAS  Google Scholar 

  88. Allen RM, Dykstra LA (1999) The competitive NMDA receptor antagonist LY235959 modulates the progression of morphine tolerance in rats. Psychopharmacol 142: 209–214

    Article  CAS  Google Scholar 

  89. Haberny KA, Young GA (1994) Interactive effects of MK-801 and morphine on EEG, EEG power spectra and behaviour in rats: I. Morphine tolerance development. Eur J Pharmacol 261: 1–9

    Article  PubMed  CAS  Google Scholar 

  90. Elliott KJ, Minami N, Kolesnikov YA, Pasternak GW, Inturrisi CE (1994) The NMDA receptor antagonists, LY274614 and MK-801, and the nitric oxide synthase inhibitor, NG-nitro-L-arginine, attenuate analgesic tolerance to the mu-opioid morphine but not to kappa opioids. Pain 56: 69–75

    Article  PubMed  CAS  Google Scholar 

  91. Inturrisi CE, Shimoyama N, Shimoyama M, Foley KM, Elliott KJ (1996) NMDA-R1 antisense attenuates morphine tolerance. Soc Neurosci 22: 1760

    Google Scholar 

  92. Kolesnikov YA, Pasternak GW (1999) Peripheral blockade of topical morphine tolerance by ketamine. Eur J Pharmacol 374: R1–R2

    Article  PubMed  CAS  Google Scholar 

  93. Kolesnikov Y, Pasternak GW (1999) Topical opioids in mice: Analgesia and reversal of tolerance by a topical N-methyl-D-aspartate antagonist. J Pharmacol Exp Ther 290: 247–252

    PubMed  CAS  Google Scholar 

  94. Bristow LJ, Hogg JE, Hutson PH (1997) Competitive and glycine/NMDA receptor antagonists attenuate withdrawal-induced behaviours and increased hippocampal acetylcholine efflux in morphine-dependent rats. Neuropharmacol 36: 241–250

    Article  CAS  Google Scholar 

  95. Bristow LJ, Coomber A, Hogg J, Hutson PH (1994) The glycine/NMDA receptor antagonists, R-(+)-HA-966 and 5,7 dichlorokynurenic acid attenuate naltrexone-precipitated morphine withdrawal in the rat. Br J Pharmacol 112: 9P

    Article  Google Scholar 

  96. Lutfy K, Shen K-Z, Kwon I-K, Cai SX, Woodward RM, Keana JFW, Weber E (1995) Blockade of morphine tolerance by ACEA-1328, a novel NMDA receptor/glycine site antagonist. Eur J Pharmacol 273: 187–189

    Article  PubMed  CAS  Google Scholar 

  97. Kolesnikov YA, Maccechini M-L, Pasternak GW (1994) 1-Aminocyclopropane carboxylic acid (ACPC) prevents mu and delta opioid tolerance. Life Sci 55: 1393–1398

    Article  PubMed  CAS  Google Scholar 

  98. Reynolds IJ (1990) Modulation of NMDA receptor responsiveness by neurotransmitters, drugs and chemical modification. Life Sci 47: 1785–1792

    Article  PubMed  CAS  Google Scholar 

  99. Robichon R, Randall PK, Leslie SW (1997) A partial agonist model used in the allosteric modulation of the NMDA receptor. Eur J Pharmacol 328: 255–263

    Article  PubMed  CAS  Google Scholar 

  100. Wiesenfeld-Hallin Z (1998) Combined opioid-NMDA antagonist therapies: What advantages do they offer for the control of pain syndromes? Drugs 55: 1–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Le Guen, S., Chapman, V., Besson, JM. (2002). Some pharmacological aspects of NMDA-mediated nociceptive transmission in the rat spinal cord as revealed by c-Fos immunocytochemistry. In: Sirinathsinghji, D.J.S., Hill, R.G. (eds) NMDA Antagonists as Potential Analgesic Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8139-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8139-5_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9453-1

  • Online ISBN: 978-3-0348-8139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics