Skip to main content

Spinal nociceptive processing: NMDA receptors and modulation by neuropeptides

  • Chapter
NMDA Antagonists as Potential Analgesic Drugs

Abstract

The excitatory amino acids, glutamate and aspartate, have long been recognised as being fundamental to the processing of nociceptive and non-nociceptive information in the spinal cord (for review see [1]). Both of these neurotransmitters are released into the dorsal horn following noxious peripheral stimulation [2]. In the early 1960s it was found that glutamate and aspartate strongly excited spinal neurones [3] and that various analogues of these amino acids were also potently active. Amongst these was NMDA [4]. It was proposed that, based upon the differential potencies of various excitant amino acids on different types of spinal neurones, a specific NMDA sensitive site existed [5, 6]. It was also found that Mg2+ could selectively inhibit responses to NMDA in the spinal cord [7] which has led to the current understanding of the voltage dependent Mg2+ block of the NMDA receptor [8]. Since these early experiments the NMDA receptor has been extensively characterised and molecular cloning techniques have revealed a variety of subunits that have a differential distribution throughout the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salt TE, Hill RG (1983) Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience 10: 1083–1103

    Article  PubMed  CAS  Google Scholar 

  2. Jeftinija S, Jeftinija K, Liu F, Skilling SR, Smullin DH, Larson AA (1991) Excitatory amino acids are released from rat primary afferent neurons in vitro. Neurosci Lett 125: 515–530

    Google Scholar 

  3. Curtis DR, Phillis JW, Watkins JC (1960) The chemical excitation of spinal neurones by certain acidic amino acids. J Physiol 150: 656–682

    PubMed  CAS  Google Scholar 

  4. Curtis DR, Watkins JC (1963) Acidic amino acids with strong excitatory actions on mammalian neurones. J Physiol 166: 1–14

    PubMed  CAS  Google Scholar 

  5. Duggan AW (1974) The differential sensitivity to L-glutamate and Laspartate of spinal interneurones and Renshaw cells. Exp Brain Res 19: 522–528

    Article  PubMed  CAS  Google Scholar 

  6. Johnston GA, Curtis DR, Davies J, McCulloch RM (1974) Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid. Nature 248: 804–805

    Article  PubMed  CAS  Google Scholar 

  7. Evans RH, Francis AA, Watkins JC (1977) Selective antagonism by Mg2+ of amino acid-induced depolarization of spinal neurones. Experientia 33: 489–491

    Article  PubMed  CAS  Google Scholar 

  8. MacDonald JF, Nowak LM (1990) Mechanisms of blockade of excitatory amino acid receptor channels. Trends Pharmacol Sci 11: 167–172

    Article  PubMed  CAS  Google Scholar 

  9. Mathisen LC, Skjelbred P, Skoglund LA, Oye I (1995) Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 61: 215–220

    Article  PubMed  CAS  Google Scholar 

  10. Stannard CF, Porter GE (1993) Ketamine hydrochloride in the treatment of phantom limb pain. Pain 54: 227–230

    Article  PubMed  CAS  Google Scholar 

  11. Backonja M, Arndt G, Gombar KA, Check B, Zimmermann M (1994) Response of chronic neuropathic pain syndromes to ketamine: a preliminary study. Pain 56: 51–57

    Article  PubMed  CAS  Google Scholar 

  12. Biscoe TJ, Davies J, Dray A, Evans RH, Francis AA, Martin MR, Watkins JC (1977) Depression of synaptic excitation and of amino acid induced excitatory responses of spinal neurons by d-alpha-amino-adipate, alpha-epsilon-diaminopimelic acid and HA 966. Eur J Pharmacol 45: 315–316

    Article  PubMed  CAS  Google Scholar 

  13. Biscoe TJ, Evans RH, Francis AA, Martin MR, Watkins JC (1977) D-alpha-amino-adipate as a selective antagonist of amino acid induced and synaptic excitation of mammalian spinal neurons. Nature 270: 743–745

    Article  PubMed  CAS  Google Scholar 

  14. Evans RH, Watkins JC (1978) Specific antagonism of excitant and amino acids in the isolated spinal cord of the neonatal rat. Eur J Pharmacol 50: 123–129

    Article  PubMed  CAS  Google Scholar 

  15. Davies J, Watkins JC (1979) Selective antagonism of amino acidinduced and synaptic excitation in the cat spinal cord. J Physiol 297: 621–635

    PubMed  CAS  Google Scholar 

  16. Schouenborg J, Sjolund BH (1986) First-order nociceptive synapses in rat dorsal horn are blocked by an amino acid antagonist. Brain Res 379: 394–398

    Article  PubMed  CAS  Google Scholar 

  17. Evans RH, Francis AA, Jones AW, Smith DAS, Watkins JC (1982) The effects of a series of omega phosphonic alpha carboxylic amino acids on electrically evoked and excitant amino acid induced responses in isolated spinal cord preparations. Br J Pharmacol 75: 65–75

    Article  PubMed  CAS  Google Scholar 

  18. Davies J, Watkins JC (1983) Role of excitatory amino acid receptors in mono synaptic and poly synaptic excitation in the cat spinal cord. Exp Brain Res 49: 280–290

    Article  PubMed  CAS  Google Scholar 

  19. Polc P (1985) 2-Amino-7-phosphonoheptanoic acid depresses gamma–motoneurons and polysynaptic reflexes in the cat spinal cord. Eur J Pharmacol 117: 387–389

    Article  PubMed  CAS  Google Scholar 

  20. Jessell TM, Yoshioka K, Jahr CE (1986) Amino acid receptor-mediated transmission at primary afferent synapses in rat spinal cord. J Exp Biol 124: 239–258

    PubMed  CAS  Google Scholar 

  21. King AE, Lopez-Garcia JA, Cumberbatch MJ (1992) Antagonism of synaptic potentials in ventral horn neurones by 6-cyano-7-nitroquinoxaline-2,3-dione: a study in the rat spinal cord in vitro. Brit J Pharmacol 107: 375–381

    Article  CAS  Google Scholar 

  22. Thompson SW, Gerber G, Sivilotti LG, Woolf CJ (1992) Long duration ventral root potentials in the neonatal rat spinal cord in vitro; the effects of ionotropic and metabotropic excitatory amino acid receptor antagonists. Brain Res 595: 87–97

    Article  PubMed  CAS  Google Scholar 

  23. Headley PM, Parsons CG, West DC (1987) The role of N-methylaspartate receptors in mediating responses of rat and cat spinal neurones to defined sensory stimuli. J Physiol (Loud) 385: 169–188

    CAS  Google Scholar 

  24. Dickenson AH, Sullivan AF (1990) Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat. Brain Res 506: 31–39

    Article  PubMed  CAS  Google Scholar 

  25. Dougherty PM, Willis WD (1991) Enhancement of spinothalamic neuron responses to chemical and mechanical stimuli following combined micro iontophoretic application of N-methyl-D-aspartic acid and substance P. Pain 47: 85–93

    Article  PubMed  CAS  Google Scholar 

  26. Dougherty PM, Palecek J, Paleckova V, Sorkin LS, Willis WD (1992) The role of NMDA and non NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci 12: 3025–3041

    PubMed  CAS  Google Scholar 

  27. Radhakrishnan V, Henry JL (1993) Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Neuroscience 55: 531–544

    Article  PubMed  CAS  Google Scholar 

  28. King AE, Lopez-Garcia JA (1993) Excitatory amino acid receptormediated neurotransmission from cutaneous afferents in rat dorsal horn in vitro. J Physiol 472: 443–457

    CAS  Google Scholar 

  29. Dale N, Roberts A (1985) Dual component amino acid mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. J Physiol 363: 35–59

    PubMed  CAS  Google Scholar 

  30. Dale N, Grillner S (1986) Dual component synaptic potentials in the lamprey mediated by excitatory amino acid receptors. J Neurosci 6: 2653–2661

    CAS  Google Scholar 

  31. King AE, Thompson SW, Urban L, Woolf CJ (1988) An intracellular analysis of amino acid induced excitations of deep dorsal horn neurones in the rat spinal cord slice. Neurosci Lett 89: 286–292

    Article  PubMed  CAS  Google Scholar 

  32. Schneider SP, Perl ER (1988) Comparison of primary afferent and glutamate excitation of neurons in the mammalian spinal dorsal horn. J Neurosci 8: 2062–2073

    CAS  Google Scholar 

  33. Gerber G, Randic M (1989) Excitatory amino acid-mediated components of synaptically evoked input from dorsal roots to deep dorsal horn neurons in the rat spinal cord slice. Neurosci Lett 106: 211–219

    Article  PubMed  CAS  Google Scholar 

  34. Gerber G, Randic M (1989) Participation of excitatory amino acid receptors in the slow excitatory synaptic transmission in the rat spinal dorsal horn in vitro. Neurosci Lett 106: 220–228

    Article  CAS  Google Scholar 

  35. Yoshimura M, Jessell TM (1990) Amino acid mediated EPSPs at primary afferent synapses with substantia gelatinosa neurons in the rat spinal cord. J Physiol 430: 315–335

    PubMed  CAS  Google Scholar 

  36. Price DD (1971) Intracellular responses of dorsal horn cells to cutaneous and sural nerve A and C fibre stimuli. Exp Neurol 33: 291–309

    Article  PubMed  CAS  Google Scholar 

  37. Mendell LM (1966) Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol 16: 316–332

    Article  PubMed  CAS  Google Scholar 

  38. Davies SN, Lodge D (1987) Evidence for involvement of N-methyl-D-aspartate receptors in “wind up” of class 2 neurones in the dorsal horn of the rat. Brain Res 424: 402–406

    Article  PubMed  CAS  Google Scholar 

  39. Dickenson AH, Sullivan AF (1987) Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 26: 1235–1238

    Article  PubMed  CAS  Google Scholar 

  40. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306: 686–688

    Article  PubMed  CAS  Google Scholar 

  41. Woolf CJ (1993) The pathophysiology of peripheral neuropathic pain – abnormal peripheral input and abnormal central processing. Acta Neurochir 58: 125–130

    CAS  Google Scholar 

  42. Haley JE, Sullivan AF, Dickenson AH (1990) Evidence for spinal N-methyl-D-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res 518: 218–226

    Article  PubMed  CAS  Google Scholar 

  43. Woolf CJ, Thompson SW (1991) The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 44: 293–299

    Article  PubMed  CAS  Google Scholar 

  44. Vaccarino AL, Marek P, Kest B, Weber E, Keana JF, Liebeskind JC (1993) NMDA receptor antagonists, MK-801 and ACEA 1011, prevent the development of tonic pain following subcutaneous formalin. Brain Res 615: 331–334

    Article  PubMed  CAS  Google Scholar 

  45. Hunter JC, Singh L (1994) Role of excitatory amino acid receptors in the mediation of the nociceptive response to formalin in the rat. Neurosci Lett 174: 217–221

    Article  PubMed  CAS  Google Scholar 

  46. Chapman V, Dickenson AH (1995) Time-related roles of excitatory amino acid receptors during persistent noxiously evoked responses of rat dorsal horn neurones. Brain Res 703: 45–50

    Article  PubMed  CAS  Google Scholar 

  47. Davar G, Hama A, Deykin A, Vos B, Maciewicz R (1991) MK-801 blocks the development of thermal hyperalgesia in a rat model of experimental painful neuropathy. Brain Res 553: 327–330

    Article  PubMed  CAS  Google Scholar 

  48. Smith GD, Wiseman J, Harrison SM, Elliott PJ, Birch PJ (1994) Pre treatment with MK-801, a non competitive NMDA antagonist, prevents development of mechanical hyperalgesia in a rat model of chronic neuropathy, but not in a model of chronic inflammation. Neurosci Lett 165: 79–83

    Article  PubMed  CAS  Google Scholar 

  49. Chizh BA, Cumberbatch MJ, Herrero JF, Stirk GC, Headley PM (1997) Stimulus intensity, cell excitation and the N-methyl-D-aspartate receptor component of sensory responses in the rat spinal cord in vivo. Neuroscience 80: 251–265

    CAS  Google Scholar 

  50. Dodt HU, Frick A, Kampe K, Zieglgansberger W (1998) NMDA and AMPA receptors on neocortical neurons are differentially distributed. Eur J Neurosci 10: 3351–3357

    Article  PubMed  CAS  Google Scholar 

  51. Onodera K, Takeuchi A (1991) Uneven distribution of excitatory amino acid receptors on ventral horn neurones of newborn rat spinal cord. J Physiol 439: 257–276

    PubMed  CAS  Google Scholar 

  52. Arancio O, MacDermott AB (1991) Differential distribution of excitatory amino acid receptors on embryonic rat spinal cord neurons in culture. J Neurophysiol 65: 899–913

    PubMed  CAS  Google Scholar 

  53. Arancio O, Yoshimura M, Murase K, MacDermott AB (1993) The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats. Neuroscience 52: 159–167

    Article  PubMed  CAS  Google Scholar 

  54. Aicher SA, Sharma S, Cheng PY, Pickel VM (1997) The N-methyl-D-aspartate (NMDA) receptor is postsynaptic to substance P-containing axon terminals in the rat superficial dorsal horn. Brain Res 772: 71–81

    Article  PubMed  CAS  Google Scholar 

  55. Cumberbatch MJ, Herrero JF, Headley PM (1994) Exposure of rat spinal neurones to NMDA, AMPA and kainate produces only short-term enhancements of responses to noxious and non-noxious stimuli. Neurosci Lett 181: 98–102

    Article  PubMed  CAS  Google Scholar 

  56. De Biasi S, Rustioni A (1988) Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proc Natl Acad Sci USA 85: 7820–7824

    Article  PubMed  Google Scholar 

  57. Merighi A, Polak JM, Theodosis DT (1991) Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co localization of glutamate, substance P and calcitonin gene related peptide. Neuroscience 40: 67–80

    Article  PubMed  CAS  Google Scholar 

  58. Skilling SR, Smullin DH, Beitz AJ, Larson AA (1988) Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J Neurochem 51: 127–132

    Article  PubMed  CAS  Google Scholar 

  59. Duggan AW, Hendry IA, Morton CR, Hutchison WD, Zhao ZQ (1988) Cutaneous stimuli releasing immunoreactive substance P in the dorsal horn of the cat. Brain Res 451: 261–273

    Article  PubMed  CAS  Google Scholar 

  60. Kangrga I, Larew JS, Randic M (1990) The effects of substance P and calcitonin gene related peptide on the efflux of endogenous glutamate and aspartate from the rat spinal dorsal horn in vitro. Neurosci Lett 108: 155–160

    Article  CAS  Google Scholar 

  61. Breukel AI, Lopes da Silva FH, Ghijsen WE (1997) Cholecystokinin (CCK-8) modulates vesicular release of excitatory amino acids in rat hippocampal nerve endings. Neurosci Lett 234: 67–70

    Article  PubMed  CAS  Google Scholar 

  62. Giovannini MG, Lacey G, Pepeu G, Nistri A (1991) Release of endogenous glutamate and aspartate from the frog spinal cord in vitro. Eur J Pharmacol 195: 47–53

    Article  CAS  Google Scholar 

  63. Hu HZ, Li ZW, Si JQ (1997) Evidence for the existence of substance P autoreceptor in the membrane of rat dorsal root ganglion neurons. Neuroscience 77: 535–541

    Article  PubMed  CAS  Google Scholar 

  64. Li HS, Zhao ZQ (1998) Small sensory neurons in the rat dorsal root ganglia express functional NK-1 tachykinin receptor. Eur J Neurosci 10: 1292–1299

    Article  PubMed  CAS  Google Scholar 

  65. Liu H, Wang H, Sheng M, Jan LY, Jan YN, Basbaum AI (1994) Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci USA 91: 8383–8387

    Article  PubMed  CAS  Google Scholar 

  66. Boyce S, Wyatt A, Webb JK, O’Donnnell R, Mason GS, Rigby M, Sirinathsinghji DJ, Hill RG, Rupniak NMJ (1999) Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacol 38: 611–623.

    Article  CAS  Google Scholar 

  67. Liu H, Mantyh PW, Basbaum AI (1997) NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 386: 721–724

    Article  PubMed  CAS  Google Scholar 

  68. Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released peptides on primate spinothalamic tract cells. J Neurosci 4: 741–750

    PubMed  CAS  Google Scholar 

  69. Jackson DA, White SR (1988) Thyrotropin releasing hormone (TRH) modified excitability of spinal cord dorsal horn cells. Neurosci Lett 92: 171–176

    Article  PubMed  CAS  Google Scholar 

  70. Murase K, Ryu PD, Randic M (1989) Tachykinins modulate multiple ionic conductances in voltage clamped rat spinal dorsal horn neurons. J Neurophysiol 61: 854–865

    PubMed  CAS  Google Scholar 

  71. Randic M, Ryu PD, Hecimovic H (1990) Modulation of glutamate in isloated rat spinal cord dorsal horn neurons by substance P. Eur J Pharmacol 183: 1682

    Article  Google Scholar 

  72. Dougherty PM, Willis WD (1991) Modification of the responses of primate spinothalamic neurons to mechanical stimulation by excitatory amino acids and an N-methyl-D aspartate antagonist. Brain Res 542: 15–22

    Article  PubMed  CAS  Google Scholar 

  73. Dougherty PM, Palecek J, Zorn S, Willis WD (1993) Combined application of excitatory amino acids and substance P produces long lasting changes in responses of primate spinothalamic tract neurons. Brain Res Rev 18: 227–246

    Article  PubMed  CAS  Google Scholar 

  74. Cumberbatch MJ, Chizh BA, Headley PM (1995) Modulation of excitatory amino acid responses by tachykinins and selective tachykinin receptor agonists in the rat spinal cord. Br J Pharmacol 115: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  75. Chizh BA, Cumberbatch MJ, Birch PJ, Headley PM (1995) Endogenous modulation of excitatory amino acid responsiveness by tachykinin NK1 and NK2 receptors in the rat spinal cord. Br J Pharmacol 115: 1013–1019

    Article  PubMed  CAS  Google Scholar 

  76. Fleetwood-Walker SM, Mitchell R, Hope PJ, El Yassir N, Molony V, Bladon CM (1990) The involvement of neurokinin receptor subtypes in somatosensory processing in the superficial dorsal horn of the cat. Brain Res 519: 169–182

    Article  PubMed  CAS  Google Scholar 

  77. Urban L, Naeem S, Patel IA, Dray A (1994) Tachykinin induced regulation of excitatory amino acid responses in the rat spinal cord in vitro. Neurosci Lett 168: 185–188

    Article  CAS  Google Scholar 

  78. Heppenstall PA, Fleetwood-Walker SM (1997) The glycine site of the NMDA receptor contributes to neurokininl receptor agonist facilitation of NMDA receptor agonistevoked activity in rat dorsal horn neurons. Brain Res 744: 235–245

    Article  PubMed  CAS  Google Scholar 

  79. Parker D, Zhang W, Grillner S (1998) Substance P modulates NMDA responses and causes long-term protein synthesis-dependent modulation of the lamprey locomotor network. J Neurosci 18: 4800–4813

    PubMed  CAS  Google Scholar 

  80. Seguin L, Millan MJ (1994) The glycine B receptor partial agonist, (+) HA966, enhances induction of antinociception by RP 67580 and CP 99,994. Eur J Pharmacol 253: R1–R3

    Article  PubMed  CAS  Google Scholar 

  81. Xu XJ, Dalsgaard CJ, Wiesenfeld-Hallin Z (1992) Spinal substance P and N-methyl-Daspartate receptors are coactivated in the induction of central sensitization of the nociceptive flexor reflex. Neuroscience 51: 641–648

    Article  PubMed  CAS  Google Scholar 

  82. Chapman V, Buritova J, Honore P, Besson JM (1996) Physiological contributions of neurokinin 1 receptor activation, and interactions with NMDA receptors, to inflammatory-evoked spinal c-Fos expression. J Neurophysiol 76: 1817–1827

    PubMed  CAS  Google Scholar 

  83. Deshpande SB, Warnick JE (1994) Analogs of thyrotropin-releasing hormone in potentiating the spinal monosynaptic reflex in vitro. Eur J Pharmacol 271: 439–444

    Article  CAS  Google Scholar 

  84. Ohno Y, Warnick JE (1988) Effects of thyrotropin-releasing hormone on phencyclidine-and ketamine-induced spinal depression in neonatal rats. Neuropharmacology 27: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  85. Chizh BA, Headley PM (1994) Thyrotropin releasing hormone (TRH) induced facilitation of spinal neurotransmission: A role for NMDA receptors. Neuropharmacology 33: 115–121

    Article  PubMed  CAS  Google Scholar 

  86. Chizh BA, Headley PM (1996) Thyrotropin-releasing hormone facilitates spinal nociceptive responses by potentiating NMDA receptor-mediated transmission. Eur J Pharmacol 300: 183–189

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Cumberbatch, M.J., Chizh, B.A., Headley, P.M. (2002). Spinal nociceptive processing: NMDA receptors and modulation by neuropeptides. In: Sirinathsinghji, D.J.S., Hill, R.G. (eds) NMDA Antagonists as Potential Analgesic Drugs. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8139-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8139-5_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9453-1

  • Online ISBN: 978-3-0348-8139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics