Skip to main content

Genetic regulation of leukotriene production and activity

  • Chapter
The Hereditary Basis of Allergic Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Leukotrienes (LTs) have been identified as critical mediators of airway narrowing and eosinophilia in bronchial asthma. They potently contract human bronchial smooth muscle, promote mucus secretion and impair muciliary clearance, increase vascular permeability leading to airway oedema, and, specifically, chemoattract human eosinophils in vitro and in vivo. In view of the importance of these lipid mediators in the pathogenesis of asthma, substantial effort has been directed at elucidating the mechanisms that regulate their production by the 5-lipoxygenase pathway and those that mediate their effects [1]. This work led directly to the development of a series of LT modifier drugs that show clinical efficiency in asthma and represent the first new form of asthma treatment in 25 years [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holgate S, Dahlen S-E (eds) (1997) SRS-A to leukotrienes: The dawning of a new treatment. Blackwell Science, Oxford, UK, 336

    Google Scholar 

  2. Drazen JM, Israel E, O’Byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway [published errata appear in N Engl J Med (1999) 340 (8): 663 and 341 (21): 1632]. N Engl J Med 340: 197–206

    PubMed  CAS  Google Scholar 

  3. Holgate ST, Sampson AP (2000) Antileukotriene therapy. Future directions. Am J Respir Crit Care Med 161: S147–153

    CAS  Google Scholar 

  4. Samuelsson B (1987) An elucidation of the arachidonic acid cascade. Discovery of prostaglandins, thromboxane and leukotrienes. Drugs 33 (Suppl 1): 2–9

    PubMed  CAS  Google Scholar 

  5. MacGlashan DW, Jr., Schleimer RP, Peters SP, Schulman ES, Adams GKd, Newball HH, Lichtenstein LM (1982) Generation of leukotrienes by purified human lung mast cells. J Clin Invest 70: 747–751

    PubMed  CAS  Google Scholar 

  6. Weller PF, Lee CW, Foster DW, Corey EJ, Austen KF, Lewis RA (1983) Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: Predominant production of leukotriene c4. Proc Natl Acad Sci USA 80: 7626–7630

    PubMed  CAS  Google Scholar 

  7. Williams JD, Czop JK, Austen KF (1984) Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators. J Immunol 132: 3034–3040

    PubMed  CAS  Google Scholar 

  8. Dahlen SE, Hedqvist P, Hammarstrom S, Samuelsson B (1980) Leukotrienes are potent constrictors of human bronchi. Nature 288: 484–486

    PubMed  CAS  Google Scholar 

  9. Weiss JW, Drazen JM, McFadden ER Jr, Weller P, Corey EJ, Lewis RA, Austen KF (1983) Airway constriction in normal humans produced by inhalation of leukotriene d. Potency, time course, and effect of aspirin therapy. Jama 249: 2814–2817

    PubMed  CAS  Google Scholar 

  10. Barnes NC, Piper PJ, Costello JF (1984) Comparative effects of inhaled leukotriene c4, leukotriene d4, and histamine in normal human subjects. Thorax 39: 500–504

    PubMed  CAS  Google Scholar 

  11. Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner M (1982) Slow-reacting substances, leukotrienes c4 and d4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis 126: 449–451

    PubMed  CAS  Google Scholar 

  12. Arm JP, Lee TH (1993) Sulphidopeptide leukotrienes in asthma [editorial]. Clin Sci (Colch) 84: 501–510

    CAS  Google Scholar 

  13. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323: 1033–1039

    PubMed  CAS  Google Scholar 

  14. Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH (1993) Leukotriene e4 and granulocytic infiltration into asthmatic airways. Lancet 341: 989–990

    PubMed  CAS  Google Scholar 

  15. Spada CS, Nieves AL, Krauss AH, Woodward DF (1994) Comparison of leukotriene b4 and d4 effects on human eosinophil and neutrophil motility in vitro. J Leukoc Biol 55: 183–191

    CAS  Google Scholar 

  16. Okubo T, Takahashi H, Sumitomo M, Shindoh K, Suzuki S (1987) Plasma levels of leukotrienes c4 and d4 during wheezing attack in asthmatic patients. Int Arch Allergy Appl Immunol 84: 149–155

    PubMed  CAS  Google Scholar 

  17. Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY (1990) Elevated levels of leukotriene c4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 142: 112–119

    PubMed  CAS  Google Scholar 

  18. Taylor GW, Taylor I, Black P, Maltby NH, Turner N, Fuller RW, Dollery CT (1989) Urinary leukotriene e4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet 1: 584–588

    PubMed  CAS  Google Scholar 

  19. Kumlin M, Dahlen B, Bjorck T, Zetterstrom O, Granstrom E, Dahlen SE (1992) Urinary excretion of leukotriene e4 and 11-dehydro-thromboxane b2 in response to bronchial provocations with allergen, aspirin, leukotriene d4, and histamine in asthmatics. Am Rev Respir Dis 146: 96–103

    PubMed  CAS  Google Scholar 

  20. Ferreri NR, Howland WC, Stevenson DD, Spiegelberg HL (1988) Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin. Am Rev Respir Dis 137: 847–854

    PubMed  CAS  Google Scholar 

  21. Picado C, Ramis I, Rosello J, Prat J, Bulbena O, Plaza V, Montserrat JM, Gelpi E (1992) Release of peptide leukotriene into nasal secretions after local instillation of aspirin in aspirin-sensitive asthmatic patients. Am Rev Respir Dis 145: 65–69

    PubMed  CAS  Google Scholar 

  22. Creticos PS, Peters SP, Adkinson NF, Jr., Naclerio RM, Hayes EC, Norman PS, Lichtenstein LM (1984) Peptide leukotriene release after antigen challenge in patients sensitive to ragweed. N Engl J Med 310: 1626–1630

    PubMed  CAS  Google Scholar 

  23. Hoover RL, Karnovsky MJ, Austen KF, Corey EJ, Lewis RA (1984) Leukotriene b4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc Natl Acad Sci USA 81: 2191–2193

    PubMed  CAS  Google Scholar 

  24. Yamaoka KA, Kolb JP (1993) Leukotriene b4 induces interleukin 5 generation from human t lymphocytes. Eur J Immunol 23: 2392–2398

    PubMed  CAS  Google Scholar 

  25. Brach MA, de Vos S, Arnold C, Gruss HJ, Mertelsmann R, Herrmann F (1992) Leukotriene b4 transcriptionally activates interleukin-6 expression involving nk-chi b and nf-i16. Eur J Immunol 22: 2705–2711

    PubMed  CAS  Google Scholar 

  26. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The pparalpha-leukotriene b4 pathway to inflammation control. Nature 384: 39–43

    PubMed  CAS  Google Scholar 

  27. Aoki Y, Qiu D, Zhao GH, Kao PN (1998) Leukotriene b4 mediates histamine induction of nf-kappab and it-8 in human bronchial epithelial cells. Am J Physiol 274: L1030–1039

    PubMed  CAS  Google Scholar 

  28. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST et al (1998) Overexpression of leukotriene c4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101: 834–846

    PubMed  CAS  Google Scholar 

  29. Dahlen SE, Haeggstrom JZ, Samuelsson B, Rabe KF, Leff AR (2000) Leukotrienes as targets for the treatment of asthma and other diseases: Current basic and clinical research. Am J Crit Care Med 161 (Suppl): S1–153

    Google Scholar 

  30. Coleman RA, Eglen RM, Jones RL, Narumiya S, Shimizu T, Smith WL, Dahlen SE, Drazen JM, Gardiner PJ, Jackson WT et al (1995) Prostanoid and leukotriene receptors: A progress report from the iuphar working parties on classification and nomenclature. Adv Prostaglandin Thromboxane Leukot Res 23: 283–285

    PubMed  CAS  Google Scholar 

  31. Metters KM (1995) Leukotriene receptors. J Lipid Mediat Cell Signal 12: 413–427

    PubMed  CAS  Google Scholar 

  32. Votta B, Mong S (1990) Transition of affinity states for leukotriene b4 receptors in sheep lung membranes. Biochem J 265: 841–847

    PubMed  CAS  Google Scholar 

  33. Owman C, Sabirsh A, Garzino-Demo A, Cocchi F (2000) Cloning of a novel chemoattractant receptor activated by leukotriene b4 and used by human immunodeficiency virus type 1 to infect cd4-positive immune cells. A therapeutic connection to asthma? Am J Respir Crit Care Med 161: S56–61

    PubMed  CAS  Google Scholar 

  34. Labat C, Ortiz JL, Norel X, Gorenne I, Verley J, Abram TS, Cuthbert NJ, Tudhope SR, Norman P, Gardiner P et al (1992) A second cysteinyl leukotriene receptor in human lung. J Pharmacol Exp Ther 263: 800–805

    PubMed  CAS  Google Scholar 

  35. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z et al (1999) Characterization of the human cysteinyl leukotriene cysltl receptor. Nature 399: 789–793

    PubMed  CAS  Google Scholar 

  36. Sarau HM, Ames RS, Chambers J, Ellis C, Elshourbagy N, Foley JJ, Schmidt DB, Muccitelli RM, Jenkins O, Murdock PR et al (1999) Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol 56: 657–663

    PubMed  CAS  Google Scholar 

  37. Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R et al (2000) Characterization of the human cysteinyl leukotriene 2 (CysLT2) receptor. J Biol Chem 275: 30531–30536

    PubMed  CAS  Google Scholar 

  38. Sampson A, Holgate S (1998) Leukotriene modifiers in the treatment of asthma. Look promising across the board of asthma severity [editorial]. BMJ 316: 1257–1258

    PubMed  CAS  Google Scholar 

  39. Holgate ST, Bradding P, Sampson AP (1996) Leukotriene antagonists and synthesis inhibitors: New directions in asthma therapy. J Allergy Clin Immunol 98: 1–13

    PubMed  CAS  Google Scholar 

  40. Spector SL, Smith LJ, Glass M (1994) Effects of 6 weeks of therapy with oral doses of ici 204,219, a leukotriene d4 receptor antagonist, in subjects with bronchial asthma. Accolate asthma trialists group. Am J Respir Crit Care Med 150: 618–623

    PubMed  CAS  Google Scholar 

  41. Evans DJ, Barnes PJ, Spaethe SM, van Alstyne EL, Mitchell MI, O’Connor BJ (1996) Effect of a leukotriene b4 receptor antagonist, ly293111, on allergen induced responses in asthma. Thorax 51: 1178–1184

    PubMed  CAS  Google Scholar 

  42. Seymour M, Aberg D, Ruse G, Rak S, Holgate S, Sampson A (1998) Seasonal allergen exposure increases expression of leukotriene pathway enzymes and induces eosinophil influx in bronchial mucosa of atopic asthmatics. J Allergy Clin Immunol 101: 711 (abstr)

    Google Scholar 

  43. Taniguchi N, Mita H, Saito H, Yui Y, Kajita T, Shida T (1985) Increased generation of leukotriene c4 from eosinophils in asthmatic patients. Allergy 40: 571–573

    PubMed  CAS  Google Scholar 

  44. Bruijnzeel PL, Virchow JC, Jr., Rihs S, Walker C, Verhagen J (1993) Lack of increased numbers of low-density eosinophils in the circulation of asthmatic individuals. Clin Exp Allergy 23: 261–269

    PubMed  CAS  Google Scholar 

  45. Laviolette M, Ferland C, Comtois JF, Champagne K, Bosse M, Boulet LP (1995) Blood eosinophil leukotriene c4 production in asthma of different severities. Eur Respir J 8: 1465–1472

    CAS  Google Scholar 

  46. Silberstein DS, Owen WF, Gasson JC, DiPersio JF, Golde DW, Bina JC, Soberman R, Austen KF, David JR (1986) Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor. J Immunol 137: 3290–3294

    PubMed  CAS  Google Scholar 

  47. Rothenberg ME, Owen WF, Jr., Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL (1988) Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest 81: 1986–1992

    PubMed  CAS  Google Scholar 

  48. Rothenberg ME, Petersen J, Stevens RL, Silberstein DS, McKenzie DT, Austen KF, Owen WF Jr (1989) I1–5-dependent conversion of normodense human eosinophils to the hypo-dense phenotype uses 3t3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol 143: 2311–2316

    PubMed  CAS  Google Scholar 

  49. Takafuji S, Bischoff SC, De Weck AL, Dahinden CA (1991) Il-3 and il-5 prime normal human eosinophils to produce leukotriene c4 in response to soluble agonists. J Immunol 147: 3855–3861

    PubMed  CAS  Google Scholar 

  50. Boyce JA, Lam BK, Penrose JF, Friend DS, Parsons S, Owen WF, Austen KF (1996) Expression of ltc4 synthase during the development of eosinophils in vitro from cord blood progenitors. Blood 88: 4338–4347

    PubMed  CAS  Google Scholar 

  51. DiPersio JF, Billing P, Williams R, Gasson JC (1988) Human granulocyte-macrophage colony-stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene b4 synthesis. J Immunol 140: 4315–4322

    PubMed  CAS  Google Scholar 

  52. McColl SR, DiPersio JF, Caon AC, Ho P, Naccache PH (1991) Involvement of tyrosine kinases in the activation of human peripheral blood neutrophils by granulocyte-macrophage colony-stimulating factor. Blood 78: 1842–1852

    PubMed  CAS  Google Scholar 

  53. Pouliot M, McDonald PP, Khamzina L, Borgeat P, McColl SR (1994) Granulocyte-macrophage colony-stimulating factor enhances 5-lipoxygenase levels in human polymorphonuclear leukocytes. J Immunol 152: 851–858

    PubMed  CAS  Google Scholar 

  54. Pouliot M, McDonald PP, Borgeat P, McColl SR (1994) Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (flap) in human neutrophils. J Exp Med 179: 1225–1232

    PubMed  CAS  Google Scholar 

  55. Stankova J, Rola-Pleszczynski M, Dubois CM (1995) Granulocyte-macrophage colony-stimulating factor increases 5-lipoxygenase gene transcription and protein expression in human neutrophils. Blood 85: 3719–3726

    PubMed  CAS  Google Scholar 

  56. Ring WL, Riddick CA, Baker JR, Munafo DA, Bigby TD (1996) Lymphocytes stimulate expression of 5-lipoxygenase and its activating protein in monocytes in vitro via granulocyte macrophage colony-stimulating factor and interleukin 3. J Clin Invest 97: 1293–1301

    PubMed  CAS  Google Scholar 

  57. Ring WL, Riddick CA, Baker JR, Glass CK, Bigby TD (1997) Activated lymphocytes increase expression of 5-lipoxygenase and its activating protein in the-1 cells. Am J Physiol 273: C2057–2064

    PubMed  CAS  Google Scholar 

  58. Bennett CF, Chiang MY, Monia BP, Crooke ST (1993) Regulation of 5-lipoxygenase and 5-lipoxygenase-activating protein expression in hl-60 cells. Biochem J 289: 33–39

    PubMed  CAS  Google Scholar 

  59. Brungs M, Radmark O, Samuelsson B, Steinhilber D (1995) Sequential induction of 5lipoxygenase gene expression and activity in mono mac 6 cells by transforming growth factor beta and 1,25-dihydroxyvitamin d3. Proc Natl Acad Sci USA 92: 107–111

    PubMed  CAS  Google Scholar 

  60. Nassar GM, Montero A, Fukunaga M, Badr KF (1997) Contrasting effects of proinflammatory and t-helper lymphocyte subset-2 cytokines on the 5-lipoxygenase pathway in monocytes. Kidney Int 51: 1520–1528

    PubMed  CAS  Google Scholar 

  61. Cowburn AS, Holgate ST, Sampson AP (1999) Il-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. J Immunol 163: 456–465

    PubMed  CAS  Google Scholar 

  62. Coffey MJ, Wilcoxen SE, Peters-Golden M (1994) Increases in 5-lipoxygenase activating protein expression account for enhanced capacity for 5-lipoxygenase metabolism that accompanies differentiation of peripheral blood monocytes into alveolar macrophages. Am J Respir Cell Mol Biol 11: 153–158

    PubMed  CAS  Google Scholar 

  63. Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Mueller R, Heusser CH, Howarth PH, Holgate ST (1994) Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: Evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10: 471–480

    PubMed  CAS  Google Scholar 

  64. Corrigan CJ, Haczku A, Gemou-Engesaeth V, Doi S, Kikuchi Y, Takatsu K, Durham SR, Kay AB (1993) Cd4 t-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Effect of glucocorticoid therapy. Am Rev Respir Dis 147: 540–547

    CAS  Google Scholar 

  65. Brown PH, Crompton GK, Greening AP (1991) Proinflammatory cytokines in acute asthma. Lancet 338: 590–593

    PubMed  CAS  Google Scholar 

  66. Miyajima A, Mui AL, Ogorochi T, Sakamaki K (1993) Receptors for granulocyte colony-stimulating factor, interleukin 3, and interleukin 5. Blood 82 (7): 1960–1974

    PubMed  CAS  Google Scholar 

  67. van der Bruggen T, Caldenhoven E, Kanters D, Coffer P, Raaijmakers JA, Lammers JW, Koenderman L (1995) Interleukin-5 signaling in human eosinophils involves jak2 tyrosine kinase and stat1 alpha. Blood 85: 1442–1448

    PubMed  Google Scholar 

  68. van der Bruggen T, Kanters D, Tool AT, Raaijmakers JA, Lammers JW, Verhoeven AJ, Koenderman L (1998) Cytokine-induced protein tyrosine phosphorylation is essential for cytokine priming of human eosinophils. J Allergy Clin Immunol 101: 103–109

    PubMed  Google Scholar 

  69. Woods JW, Evans JF, Ethier D, Scott S, Vickers PJ, Hearn L, Heibein JA, Charleson S, Singer, II (1993) 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med 178: 1935–1946

    PubMed  CAS  Google Scholar 

  70. Brock TG, McNish RW, Bailie MB, Peters-Golden M (1997) Rapid import of cytosolic 5-lipoxygenase into the nucleus of neutrophils after in vivo recruitment and in vitro adherence. J Biol Chem 272: 8276–8280

    PubMed  CAS  Google Scholar 

  71. Brock TG, Anderson JA, Fries FP, Peters-Golden M, Sporn PH (1999) Decreased leukotriene c4 synthesis accompanies adherence-dependent nuclear import of 5-lipoxygenase in human blood eosinophils. J Immunol 162: 1669–1676

    PubMed  CAS  Google Scholar 

  72. Lepley RA, Fitzpatrick FA (1994) 5-lipoxygenase contains a functional src homology 3-binding motif that interacts with the src homology 3 domain of grb2 and cytoskeletal proteins. J Biol Chem 269: 24163–24168

    PubMed  CAS  Google Scholar 

  73. Lepley RA, Muskardin DT, Fitzpatrick FA (1996) Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. J Biol Chem 271: 6179–6184

    PubMed  CAS  Google Scholar 

  74. Penrose JF, Spector J, Baldasaro M, Xu K, Boyce J, Arm JP, Austen KF, Lam BK (1996) Molecular cloning of the gene for human leukotriene c4 synthase. Organization, nucleotide sequence, and chromosomal localization to 5q35. J Biol Chem 271: 11356–11361

    PubMed  CAS  Google Scholar 

  75. Peers SH, Flower RJ (1990) The role of lipocortin in corticosteroid actions. Am Rev Respir Dis 141: S18–21

    PubMed  CAS  Google Scholar 

  76. Djukanovic R, Wilson JW, Britten KM, Wilson SJ, Walls AF, Roche WR, Howarth PH, Holgate ST (1992) Effect of an inhaled corticosteroid on airway inflammation and symptoms in asthma. Am Rev Respir Dis 145: 669–674

    PubMed  CAS  Google Scholar 

  77. Riddick CA, Ring WL, Baker JR, Hodulik CR, Bigby TD (1997) Dexamethasone increases expression of 5-lipoxygenase and its activating protein in human monocytes and the-1 cells. Eur J Biochem 246: 112–118

    PubMed  CAS  Google Scholar 

  78. Goppelt-Struebe M, Schaefer D, Habenicht AJ (1997) Differential regulation of cyclooxygenase-2 and 5-lipoxygenase-activating protein (flap) expression by glucocorticoids in monocytic cells. Br J Pharmacol 122: 619–624

    PubMed  CAS  Google Scholar 

  79. Scoggan KA, Ford-Hutchinson AW, Nicholson DW (1995) Differential activation of leukotriene biosynthesis by granulocyte-macrophage colony-stimulating factor and interleukin-5 in an eosinophilic substrain of h1–60 cells. Blood 86: 3507–3516

    PubMed  CAS  Google Scholar 

  80. Manso G, Baker AJ, Taylor IK, Fuller RW (1992) In vivo and in vitro effects of glucocorticosteroids on arachidonic acid metabolism and monocyte function in nonasthmatic humans. Eur Respir J 5: 712–716

    PubMed  CAS  Google Scholar 

  81. Dworski R, Fitzgerald GA, Oates JA, Sheller JR (1994) Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 149: 953–959

    PubMed  CAS  Google Scholar 

  82. Sayers I, Beghe B, Holloway J, Holgate S (2000) Genetics of asthma: What’s new? In: SHS Johnston (ed): Challenges in asthma. Blackwell Science, Oxford, UK, 138–168

    Google Scholar 

  83. Shamsuddin M, Chen E, Anderson J, Smith LJ (1997) Regulation of leukotriene and platelet-activating factor synthesis in human alveolar macrophages. J Lab Clin Med 130: 615–626

    PubMed  CAS  Google Scholar 

  84. Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, Komagata Y, Maki K, Ikuta K, Ouchi Y et al (1997) Role of cytosolic phospholipase A2 in allergic response and parturition. Nature 390: 618–622

    PubMed  CAS  Google Scholar 

  85. Peters-Golden M, McNish RW (1993) Redistribution of 5-lipoxygenase and cytosolic phospholipase a2 to the nuclear fraction upon macrophage activation. Biochem Biophys Res Commun 196: 147–153

    PubMed  CAS  Google Scholar 

  86. Tay A, Simon JS, Squire J, Hamel K, Jacob HJ, Skorecki K (1995) Cytosolic phospholipase a2 gene in human and rat: Chromosomal localization and polymorphic markers. Genomics 26: 138–141

    PubMed  CAS  Google Scholar 

  87. Sharp J, White D, G Chiou (1991) Molecular cloning and expression of human ca(2+)sensitive cytosolic phospholipase a2. J Biol Chem 266: 14850–14853

    PubMed  CAS  Google Scholar 

  88. Wu T, Ikezono T, Angus W, Shelhamer J (1994) Characterisation of the promoter of the human 85 kda cytosolic phospholipase a2 gene. Nucleic Acid Research 22: 5093–5098

    CAS  Google Scholar 

  89. Miyashita A, Crystal RG, Hay JG (1995) Identification of a 27 bp 5’-flanking region element responsible for the low level constitutive expression of the human cytosolic phospholipase a2 gene. Nucleic Acids Res 23: 293–301

    PubMed  CAS  Google Scholar 

  90. Song C, Chang XJ, Bean KM, Proia MS, Knopf JL, Kriz RW (1999) Molecular characterization of cytosolic phospholipase a2-beta. J Biol Chem 274: 17063–17067

    PubMed  CAS  Google Scholar 

  91. Matsumoto T, Funk CD, Radmark O, Hoog JO, Jornvall H, Samuelsson B (1988) Molecular cloning and amino acid sequence of human 5-lipoxygenase [published erratum appears in Proc Natl Acad Sci USA (1988) 85 (10): 3406]. Proc Natl Acad Sci USA 85: 26–30

    PubMed  CAS  Google Scholar 

  92. Steinhilber D, Brungs M, Radmark O, Samuelsson B (1995) Transforming growth factor-beta and 1,25-dihydroxyvitamin d3 induce 5-lipoxygenase activity during myeloid cell maturation. Adv Prostaglandin Thromboxane Leukot Res 23: 449–451

    PubMed  CAS  Google Scholar 

  93. Coffey M, Peters-Golden M, Fantone JCd, Sporn PH (1992) Membrane association of active 5-lipoxygenase in resting cells. Evidence for novel regulation of the enzyme in the rat alveolar macrophage. J Biol Chem 267: 570–576

    PubMed  CAS  Google Scholar 

  94. Koshino T, Takano S, Houjo T, Sano Y, Kudo K, Kihara H, Kitani S, Takaishi T, Hirai K, Ito K et al (1998) Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein mrnas in the peripheral blood leukocytes of asthmatics. Biochem Biophys Res Commun 247: 510–513

    PubMed  CAS  Google Scholar 

  95. Colamorea T, Di Paola R, Macchia F, Guerrese MC, Tursi A, Butterfield JH, Caiaffa MF, Haeggstrom JZ, Macchia L (1999) 5-lipoxygenase upregulation by dexamethasone in human mast cells. Biochem Biophys Res Commun 265: 617–624

    PubMed  CAS  Google Scholar 

  96. Funk CD, Hoshiko S, Matsumoto T, Rdmark O, Samuelsson B (1989) Characterization of the human 5-lipoxygenase gene. Proc Natl Acad Sci USA 86: 2587–2591

    PubMed  CAS  Google Scholar 

  97. Hoshiko S, Radmark O, Samuelsson B (1990) Characterization of the human 5-lipoxygenase gene promoter. Proc Natl Acad Sci USA 87: 9073–9077

    PubMed  CAS  Google Scholar 

  98. Boado RJ, Pardridge WM, Vinters HV, Black KL (1992) Differential expression of arachidonate 5-lipoxygenase transcripts in human brain tumors: Evidence for the expression of a multitranscript family. Proc Natl Acad Sci USA 89. 9044–9048

    PubMed  CAS  Google Scholar 

  99. In KH, Asano K, Beier D, Grobholz J, Finn PW, Silverman EK, Silverman ES, Collins T, Fischer AR, Keith TP et al (1997) Naturally occurring mutations in the human 5-lipoxy-genase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 99: 1130–1137

    PubMed  CAS  Google Scholar 

  100. Silverman ES, Du J, De Sanctis GT, Radmark O, Samuelsson B, Drazen JM, Collins T (1998) Egr-1 and sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am J Respir Cell Mol Biol 19: 316–323

    PubMed  CAS  Google Scholar 

  101. Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A, Israel E, Schork N, Silverman ES, Katz DA et al (1999) Pharmacogenetic association between alox5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22: 168–170

    PubMed  CAS  Google Scholar 

  102. Silverman E, In KH, Yandava C, Drazen JM (1998) Pharmacogenetics of the 5-lipoxygenase pathway in asthma. Clin Exp Allergy 28 (Suppl 5): 164–170; discussion 171–163

    Google Scholar 

  103. Drazen JM, Silverman ES (1999) Genetic determinants of 5-lipoxy-genase transcription. Int Arch Allergy Immunol 118: 275–278

    PubMed  CAS  Google Scholar 

  104. Silverman ES, Drazen JM (1999) The biology of 5-lipoxygenase: Function, structure, and regulatory mechanisms. Proc Assoc Am Physicians 111: 525–536

    PubMed  CAS  Google Scholar 

  105. Silverman ES, Drazen JM (2000) Genetic variations in the 5-lipoxygenase core promoter. Description and functional implications. Am J Respir Crit Care Med 161: S77–80

    PubMed  CAS  Google Scholar 

  106. Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343: 282–284

    PubMed  CAS  Google Scholar 

  107. Kennedy B, Diehl R, Boie Y, Adam M, Dixon R (1991) Gene characterisation and promoter analysis of the human 5-lipoxygenase-activating protein (flap). J Biol Chem 266: 8511–8516

    PubMed  CAS  Google Scholar 

  108. Yandava CN, Kennedy BP, Pillari A, Duncan AM, Drazen JM (1999) Cytogenetic and radiation hybrid mapping of human arachidonate 5-lipoxygenase-activating protein (alox5ap) to chromosome 13q12. Genomics 56: 131–133

    PubMed  CAS  Google Scholar 

  109. Yoshida S, Penrose J, Stevenson D, Shikanani T, Asano K, Yandava C, Drazen J (2000) Polymorphism with genes in cysteinyl leukotriene synthesis pathway in aspirin-intolerant asthma. Am J Respir Crit Care Med 161 (3): A602 (abstract)

    Google Scholar 

  110. Lam BK, Penrose JF, Freeman GJ, Austen KF (1994) Expression cloning of a cdna for human leukotriene c4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene a4. Proc Natl Acad Sci USA 91: 7663–7667

    PubMed  CAS  Google Scholar 

  111. Welsch DJ, Creely DP, Hauser SD, Mathis KJ, Krivi GG, Isakson PC (1994) Molecular cloning and expression of human leukotriene-c4 synthase. Proc Natl Acad Sci USA 91: 9745–9749

    PubMed  CAS  Google Scholar 

  112. Scoggan KA, Jakobsson PJ, Ford-Hutchinson AW (1997) Production of leukotriene c4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. J Biol Chem 272: 10182–10187

    PubMed  CAS  Google Scholar 

  113. Bigby TD, Hodulik CR, Arden KC, Fu L (1996) Molecular cloning of the human leukotriene c4 synthase gene and assignment to chromosome 5q35. Mol Med 2: 637–646

    PubMed  CAS  Google Scholar 

  114. Zhao JL, Austen KF, Lam BK (2000) Cell-specific transcription of leukotriene c(4) synthase involves a kruppel-like transcription factor and sp1. J Biol Chem 275: 8903–8910

    PubMed  CAS  Google Scholar 

  115. Zaitsu M, Hamasaki Y, Yamamoto S, Kita M, Hayasaki R, Muro E, Kobayashi I, Matsuo M, Ichimaru T, Miyazaki S (1998) Effect of dexamethasone on leukotriene synthesis in dmso-stimulated h1–60 cells. Prostaglandins Leukot Essent Fatty Acids 59: 385–393

    PubMed  CAS  Google Scholar 

  116. Riddick CA, Serio KJ, Hodulik CR, Ring WL, Regan MS, Bigby TD (1999) Tgf-beta increases leukotriene c4 synthase expression in the monocyte-like cell line, the-1. J Immunol 162: 1101–1107

    PubMed  CAS  Google Scholar 

  117. Shimada K, Navarro J, Goeger DE, Mustafa SB, Weigel PH, Weinman SA (1998) Expression and regulation of leukotriene-synthesis enzymes in rat liver cells. Hepatology 28: 1275–1281

    PubMed  CAS  Google Scholar 

  118. Sanak M, Simon HU, Szczeklik A (1997) Leukotriene c4 synthase promoter polymorphism and risk of aspirin-induced asthma [letter]. Lancet 350: 1599–1600

    PubMed  CAS  Google Scholar 

  119. Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A (2000) Enhanced expression of the leukotriene c4 synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 23: 290–296

    PubMed  CAS  Google Scholar 

  120. Szczeklik A, Stevenson DD (1999) Aspirin-induced asthma: Advances in pathogenesis and management. J Allergy Clin Immunol 104: 5–13

    PubMed  CAS  Google Scholar 

  121. Sampson A, Siddiqui S, Cowburn A, Buchanan D, Howarth P, Holgate S, Holloway J, Sayers I (2000) Variant ltc4 synthase allele modifies cysteinyl-leukotriene synthesis in eosinophils and predicts clinical response to zafarlukast. Thorax 55 (Suppl 2): S28–S31

    PubMed  Google Scholar 

  122. Minami M, Ohno S, Kawasaki H, Radmark O, Samuelsson B, Jornvall H, Shimizu T, Seyama Y, Suzuki K (1987) Molecular cloning of a cdna coding for human leukotriene a4 hydrolase. Complete primary structure of an enzyme involved in eicosanoid synthesis. J Biol Chem 262: 13873–13876

    PubMed  CAS  Google Scholar 

  123. Funk CD, Radmark O, Fu JY, Matsumoto T, Jornvall H, Shimizu T, Samuelsson B (1987) Molecular cloning and amino acid sequence of leukotriene a4 hydrolase. Proc Natl Acad Sci USA 84: 6677–6681

    PubMed  CAS  Google Scholar 

  124. Mancini JA, Evans JF (1995) Cloning and characterization of the human leukotriene a4 hydrolase gene. Eur J Biochem 231: 65–71

    PubMed  CAS  Google Scholar 

  125. Jendraschak E, Kaminski WE, Kiefl R, von Schacky C (1996) The human leukotriene a4 hydrolase gene is expressed in two alternatively spliced mrna forms. Biochem J 314: 733–737

    PubMed  CAS  Google Scholar 

  126. Bulle F, Maffei MG, Siegrist S, Pawlak A, Passage E, Chobert MN, Laperche Y, Guellaen G (1987) Assignment of the human gamma-glutamyl transferase gene to the long arm of chromosome 22. Hum Genet 76: 283–286

    PubMed  CAS  Google Scholar 

  127. Sakamuro D, Yamazoe M, Matsuda Y, Kangawa K, Taniguchi N, Matsuo H, Yoshikawa H, Ogasawara N (1988) The primary structure of human gamma-glutamyl transpeptidase. Gene 73: 1–9

    PubMed  CAS  Google Scholar 

  128. Pawlak A, Wu SJ, Bulle F, Suzuki A, Chikhi N, Ferry N, Baik JH, Siegrist S, Guellaen G (1989) Different gamma-glutamyl transpeptidase mrnas are expressed in human liver and kidney. Biochem Biophys Res Commun 164: 912–918

    PubMed  CAS  Google Scholar 

  129. Kozak EM, Tate SS (1982) Glutathione-degrading enzymes of microvillus membranes. J Biol Chem 257: 6322–6327

    PubMed  CAS  Google Scholar 

  130. Adachi H, Tawaragi Y, Inuzuka C, Kubota I, Tsujimoto M, Nishihara T, Nakazato H (1990) Primary structure of human microsomal dipeptidase deduced from molecular cloning. J Biol Chem 265: 3992–3995

    PubMed  CAS  Google Scholar 

  131. Carter BZ, Wiseman AL, Orkiszewski R, Ballard KD, Ou CN, Lieberman MW (1997) Metabolism of leukotriene c4 in gamma-glutamyl transpeptidase-deficient mice. J Biol Chem 272: 12305–12310

    PubMed  CAS  Google Scholar 

  132. Habib GM, Shi ZZ, Cuevas AA, Guo Q, Matzuk MM, Lieberman MW (1998) Leukotriene d4 and cystinyl-bis-glycine metabolism in membrane-bound dipeptidasedeficient mice. Proc Natl Acad Sci USA 95: 4859–4863

    PubMed  CAS  Google Scholar 

  133. Owman C, Nilsson C, Lolait SJ (1996) Cloning of cdna encoding a putative chemoattractant receptor. Genomics 37: 187–194

    PubMed  CAS  Google Scholar 

  134. Akbar GKM, Dasari VR, Webb TE, Ayyanathan K, Pillarisetti K, Sandhu AK, Athwal RS, Daniel JL, Ashby B, Barnard EA et al (1996) Molecular cloning of a novel p2 purinoceptor from human erythroleukemia cells. J Biol Chem 271: 18363–18367

    PubMed  Google Scholar 

  135. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T (1997) A g-protein-coupled receptor for leukotriene b4 that mediates chemotaxis. Nature 387: 620–624

    PubMed  CAS  Google Scholar 

  136. Yokomizo T, Masuda K, Kato K, Toda A, Izumi T, Shimizu T (2000) Leukotriene b4 receptor. Cloning and intracellular signaling. Am J Respir Crit Care Med 161: S51–55

    PubMed  CAS  Google Scholar 

  137. Pulleyn L, Adcock I, Barnes P (2000) A screen of the cysltl receptor gene for polymorphisms associated with asthma severity. American Thoracic Society, Toronto, meeting abstract

    Google Scholar 

  138. Bolk S, Lilly C, Yandava C, Green M, Lander E, Daly M, Evans J, Metzker M, Drazen J (2000) Naturally occuring sequence variants in the cysltl receptor. American Thoracic Society, Toronto, meeting abstract

    Google Scholar 

  139. Panettieri RA, Tan EM, Ciocca V, Luttmann MA, Leonard TB, Hay DW (1998) Effects of ltd4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: Differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 19: 453–461

    PubMed  CAS  Google Scholar 

  140. Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A, Wei LX, Seidenberg BC, Reiss TF (1999) Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/beclomethasone study group. Ann Intern Med 130: 487–495

    PubMed  CAS  Google Scholar 

  141. Hasday JD, Meltzer SS, Moore WC, Wisniewski P, Hebel JR, Lanni C, Dube LM, Bleecker ER (2000) Anti-inflammatory effects of zileuton in a subpopulation of allergic asthmatics. Am J Respir Crit Care Med 161: 1229–1236

    PubMed  CAS  Google Scholar 

  142. Goulet JL, Byrum RS, Key ML, Nguyen M, Wagoner VA, Koller BH (2000) Genetic factors determine the contribution of leukotrienes to acute inflammatory responses. J Immunol 164: 4899–4907

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Sayers, I., Sampson, A.P. (2002). Genetic regulation of leukotriene production and activity. In: Holgate, S.T., Holloway, J.W. (eds) The Hereditary Basis of Allergic Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8137-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8137-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9452-4

  • Online ISBN: 978-3-0348-8137-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics