Skip to main content

Collagen cross-links as markers of bone and cartilage degradation

  • Conference paper

Abstract

An early study showed that desmosine and isodesmosine from degraded elastin are not metabolized, but are quantitatively excreted in urine [1].The structurally related pyridinoline cross-links of collagen were later also found in urine [2].Robins and colleagues introduced methods for measuring urinary pyridinoline and deoxypyridinoline residues as markers of systemic collagen degradation, and in particular of bone resorption [3].Finding that most of the urinary pyridinolines were in a narrow size-range of small peptides, we identified the amino acid sequences containing the cross-linking residues for immunoassay on the premise that this would provide greater specificity to their originating tissues and collagen types [4].First, we targeted cross-linked N-telopeptide fragments of type I collagen, most of which must have originated from bone based on their HP:LP ratio [5].Commercial versions of this assay (NTx) for urine and serum have seen widespread use in clinical studies, for example of anti-osteoporotic drugs [6,7].Immunoassays for the cross-linked Ctelopeptides of type I collagen (CTx), also identified in urine [8],have been introduced as comparable bone resorption markers [9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starcher BC, Goldstein RA (1979) Studies on the absorption of desmosine and isodesmosine. J Lab Clin Med 94(6): 848–852

    PubMed  CAS  Google Scholar 

  2. Gunja-Smith Z, Boucek RJ (1981) Collagen cross-linking compounds in human urine. Biochem J 197(3): 759–762

    PubMed  CAS  Google Scholar 

  3. Robins SP (1982) An enzyme-linked immunoassay for the collagen cross-link pyridino-line. Biochem J 207(3): 617–620

    PubMed  CAS  Google Scholar 

  4. Eyre DR, Ericsson LH, Simon LS, Krane SM (1988) Identification of urinary peptides derived from cross-linking sites in bone collagen in Paget’s disease. J Bone Miner Res 3(Suppl. 1): S210

    Google Scholar 

  5. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR (1992) A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 7(11): 1251–1258

    Article  PubMed  CAS  Google Scholar 

  6. Chesnut CH III, Bell NH, Clark GS, Drinkwater BL, English SC, Johnson CC, Jr., Notelovitz M, Rosen C, Cain DF, Flessland, KA, Mallinak NJ (1997) Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med 102(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  7. Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S (1998) Application of a new serum assay for type I collagen cross-linked N-telopeptides: Assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Jut 63(2): 102–106

    Article  CAS  Google Scholar 

  8. Bonde M, Qvist P, Fledelius C, Rus BJ, Christiansen C (1994) Immunoassay for quanti-fying type I collagen degradation products in urine evaluated. Clin Chem 40: 2022–2025

    PubMed  CAS  Google Scholar 

  9. Greenspan SL, Rosen HN, Parker RA (2000) Early changes in serum N-telopeptide and C-telopeptide cross-linked collagen type 1 predict long-term response to alendronate therapy in elderly women. J Clin Endocrinol Metab 85(10): 3537–3540

    Article  CAS  Google Scholar 

  10. Atley LM, Mort JS, Lalumiere M, Eyre DR (2000) Proteolysis of human bone collagen by cathepsin K: Characterization of the cleavage sites generating the cross-linked Ntelopeptide neoepitope. Bone 26(3): 241–247

    Article  PubMed  CAS  Google Scholar 

  11. Apone S, Lee MY, Eyre DR (1997) Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. Bone 21(2): 129–136

    Article  PubMed  CAS  Google Scholar 

  12. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273(5279): 1236–1238

    Article  PubMed  CAS  Google Scholar 

  13. Nishi Y, Atley L, Eyre DR, Edelson JG, Superti-Gurga A, Yasuda T, Desnick RJ, Gelb BD (1999) Determination of bone markers in pycnodysostosis: Effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res 14(11): 1902–1908

    Article  PubMed  CAS  Google Scholar 

  14. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz J, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  15. Delmas PD (1999) Biochemical markers of bone turnover in Paget’s disease of bone. J Bone Miner Res 14(S2): 66–69

    Article  PubMed  CAS  Google Scholar 

  16. Wichers M, Schmidt E, Bidlingmaier F, Klingmuller D (1999) Diurnal rhythm of cross-laps in human serum. Clin Chem 45(10): 1858–1860

    PubMed  CAS  Google Scholar 

  17. Wu JJ, Eyre DR (1984) Cartilage type IX collagen is cross-linked by hydroxypyridinium residues. Biochem Biophys Res Comm 123: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  18. Wu JJ, Lark MW, Chun LE, Eyre DR (1991) Sites of stromelysin cleavage in collagen types II, IX, X and XI of cartilage. J Biol Chem 266: 5625–5628

    PubMed  CAS  Google Scholar 

  19. Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108: 191–197

    Article  PubMed  CAS  Google Scholar 

  20. Wu J-J, Eyre DR (1995) Structural analysis of cross-linking domains in cartilage type XI collagen: Insights on polymeric assembly. J Biol Chem 270(32): 18865–18870

    Article  PubMed  CAS  Google Scholar 

  21. Miles CA, Knott L, Sumner IG, Bailey AJ (1988) Differences between the thermal stabilities of the three triple-helical domains of type IX collagen. J Mol Biol 277: 135–144

    Article  Google Scholar 

  22. Diab M, Wu J-J, Eyre DR (1996) Collagen type IX from human cartilage: A structural profile of intermolecular cross-linking sites. Biochem J 314: 327–332

    PubMed  CAS  Google Scholar 

  23. Vater CA, Harris ED, Jr., Siegel RC (1979) Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochem J 181(3): 639–645

    PubMed  CAS  Google Scholar 

  24. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130(1): 227–237

    Article  PubMed  CAS  Google Scholar 

  25. Wu J-J, Lark MW, Chun LE, Eyre DR (1991) Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem 266(9): 5625–5628

    PubMed  CAS  Google Scholar 

  26. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR (1994) Increased damage to type Il collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 93(4): 1722–1732

    Article  PubMed  CAS  Google Scholar 

  27. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99(7): 1534–1545

    Article  PubMed  CAS  Google Scholar 

  28. Otterness IG, Downs JT, Lane C, Bliven ML, Stukenbrok H, Scampoli DN, Milici AJ, Mezes PS (1999) Detection of collagenase-induced damage of collagen by 9A4, a monoclonal C-terminal neoepitope antibody. Matrix Biol 18(4): 331–341

    Article  PubMed  CAS  Google Scholar 

  29. Atley LM, Shao P, Ochs V, Shaffer K, Eyre DR (1998) Matrix metalloproteinase-mediated release of immunoreactive telopeptides from cartilage type II collagen. Trans Orthop Res Soc, New Orleans 23(2): 850

    Google Scholar 

  30. Eyre DR, Shao P, Vosberg-Smith K, Weis M, Shaffer K, Yoshihara P (1996) Cross-linked telopeptides from collagen types I, II and III in human urine. J Bone Miner Res 11(51): 5413

    Google Scholar 

  31. Atley LM, Sharma L, Clemens JD, Shaffer K, Pietka TA, Riggins JA, Eyre DR (2000) The collagen II CTx degradation marker is generated by collagenase 3 and in urine reflects disease burden in knee OA patients. Trans Orthop Res Soc, Orlando, FL 25: 0168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Eyre, D.R., Atley, L.M., Wu, JJ. (2002). Collagen cross-links as markers of bone and cartilage degradation. In: Hascall, V.C., Kuettner, K.E. (eds) The Many Faces of Osteoarthritis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8133-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8133-3_27

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9450-0

  • Online ISBN: 978-3-0348-8133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics