Skip to main content

Electron microscope studies of collagen fibril formation in cornea, skin and tendon: Implications for collagen fibril assembly and structure in other tissues

  • Conference paper
The Many Faces of Osteoarthritis
  • 294 Accesses

Abstract

Collagen is one of the most widespread structural proteins in animals, and more than 23 genetically-distinct types of collagen are found in man (for review see [1]). Collagens comprise three polypeptide chains in which glycine (the smallest amino acid) occurs at every third residue position. The repeating Gly-X-Y motif (in which X and Y can be any amino acid and is often proline and hydroxyproline amino acids) is required for three polypeptide chains to assemble into a triple helix. The most abundant collagens are the fibril-forming types I, II, III, V and XI, which contain three polypeptide chains, each containing ~1000 residues, wound into an uninterrupted triple helix of ~295 nm in length (for review see [2]). These collagens occur in the extracellular matrix as D-periodic fibrils (where D = ~ 67 nm, the axial periodicity), which are indeterminate in length [3], and have a near-uniform diameter in the range 12-500 nm depending on tissue and stage of development (see Fig.1). The fibrils are heterotypic and contain more than one genetic type of collagen. For example, collagen fibrils in cartilage comprise type II collagen and minor quantities of type XI collagen and type IX collagen. The type IX collagen is an example of a fibril-associated collagen with interrupted triple helices (FACIT). Fibrils in other tissues contain type I collagen with minor amounts of type III and V collagen. The fibrils are stabilized by interchain covalent crosslinks, which require oxidative deamination of specific lysyl and hydroxylysyl residues by lysyl oxidase(s) (for review see [4]). The fibrils have binding sites on their surfaces for small leucine rich proteoglycans (SLRPs) [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kielty CM, Grant ME (2002) The collagen family: structure, assembly and organization in the extracellular matrix. In: B Steinmann, PM Royce (eds): Connective tissue and its heritable diseases 2nd ed. PM Wiley Liss, New York

    Google Scholar 

  2. Kadler KE, Holmes DF, Trotter J, Chapman JA (1996) Collagen fibril formation. Biochem J 316: 1–11

    PubMed  CAS  Google Scholar 

  3. Parry DAD, Craig, AS (1984) Growth and development of collagen fibrils in connective tissue. In: A Ruggeri, PM Motta (eds): Ultastructure of the connective tissue matrix. Martinus Nijhoff Publishers, 34–64

    Chapter  Google Scholar 

  4. Smith-Mungo LI, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16: 387–398

    Article  PubMed  CAS  Google Scholar 

  5. lozzo RI (1999) The biology of the small leucine rich proteoglycans. J Biol Chem 274:18843–18846

    Article  Google Scholar 

  6. Lees JF, Tasab M, Bulleid NJ (1997) Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16: 908–916

    CAS  Google Scholar 

  7. Kadler KE, Hojima Y, Prockop D J (1987) Assembly of collagen fibrils de novo by enzymic cleavage of the type I pCcollagen by procollagen C-proteinase. Assay of critical concentration demonstrates that the process is an example of classical entropy-driven self assembly. J Biol Chem 262: 15696–15701

    PubMed  CAS  Google Scholar 

  8. Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS (1996) Bone morphogenetic protein-1: The type I procollagen C-proteinase. Science 271: 360–362

    Article  PubMed  CAS  Google Scholar 

  9. Li S-W, Sieron AL, Fertala A, Hojima Y, Arnold WV, Prockop DJ (1996) The C-proteinase that processes procollagens to fibrillar collagens is identical to the protein previously identified as hone morphogenetic protein-1. Proc Natl Acad Sci USA 93: 5127–5130

    Article  PubMed  CAS  Google Scholar 

  10. Scott IC, Blitz IL, Pappano WN, Imamura Y, Clark TG, Steiglitz BM, Thomas CL, Maas SA, Takahara K, Cho KW, Greenspan DS (1999) Mammalian BMP-1/tolloid-related metalloproteinases, including novel family member mammalian tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Developmental Biol 213: 282–300

    Article  Google Scholar 

  11. Chapman JA (1989) The regulation of size and form in the assembly of collagen fibrils in vivo. Biopolymers 28: 1367–1382 (addition: 28: 2201–2205)

    Google Scholar 

  12. Holmes DF, Watson RB, Steinmann B, Kadler KE (1993) Ehlers Danlos syndrome type VIIB. Morphology of type I collagen fibrils is determined by the conformation of the Npropeptide. J Biol Chem 268: 15758–15765

    PubMed  CAS  Google Scholar 

  13. Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta 1 and BMP-2. J Cell Biol 144: 1069–1080

    Article  PubMed  CAS  Google Scholar 

  14. Coige A, Li S-W, Sieron A, Nusgens BV, Prockop DJ, Lapiere CM (1997) CDNA cloning and expression of bovine procollagen (N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA 94: 2374–2379

    Article  Google Scholar 

  15. Colige A, Beschin A, Samyn B, Goebels Y, Beeumen JV, Nusgens BV, Lapiere CM (1995) Characterization and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilized type XIV collagen. J Biol Chem 270: 16724–16730

    Article  PubMed  CAS  Google Scholar 

  16. Fernandes RJ, Hirohata S, Engle JM, Colige A, Cohn DH, Eyre DR, Apte SS (2000) Pro-collagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 276: 31502–31509

    Article  Google Scholar 

  17. Hojima Y, van der Rest M, Prockop DJ (1985) Type I procollagen carboxyl terminal proteinase from chick embryo tendons — purification and characterisation. J Biol Chem 260: 5996–6003

    Google Scholar 

  18. Kadler KE, Hojima Y, Prockop DJ (1990) Collagen fibrilsin vitrogrow from pointed tips in the C- to N-terminal direction. Biochem J 268: 339–343

    PubMed  CAS  Google Scholar 

  19. Holmes DF, Chapman JA, Prockop DJ, Kadler KE (1992) Growing tips of type I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc Natl Acad Sci USA 89: 9855–9859

    Article  PubMed  CAS  Google Scholar 

  20. Holmes DF, Watson RB, Chapman JA, Kadler KE (1996) Enzymic control of collagen fibril shape. J Mol Biol 261: 93–97

    Article  PubMed  CAS  Google Scholar 

  21. Holmes DF, Graham HK, Kadler KE (1998) Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips unobserved in cell-free systems. J Mol Biol 283: 1049–1058

    Article  PubMed  CAS  Google Scholar 

  22. Holmes DF, Lowe MP, Chapman JA (1994) Vertebrate (chick) collagen fibrils formed in vivo can exhibit a reversal in molecular polarity. J Mol Biol 235: 80–83

    Article  PubMed  CAS  Google Scholar 

  23. Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on molecular recognition sequences in unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 295: 891–902

    Article  PubMed  CAS  Google Scholar 

  24. Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in-situ — fibril segments undergo postdepositional modifications resulting in linear and lateral growth during matrix development. Developmental Dynamics 202:229–243

    Article  PubMed  CAS  Google Scholar 

  25. Birk DE, Hahn RA, Linsenmayer CY, Zycband EI (1996) Characterization of collagen fibril segments from chicken embryo cornea, dermis and tendon. Matrix Biology 15: 111–118

    Article  PubMed  CAS  Google Scholar 

  26. Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL (1997) Collagen fibrillogenesis in situ: Fibril segments become long fibrils as the developing tendon matures. Developmental Dynamics 208: 291–298

    Article  PubMed  CAS  Google Scholar 

  27. Wess TJ, Hammersley AP, Wess L, Miller A (1998) A consensus model for molecular packing of type I collagen. J Struct Biol 122: 92–100

    Article  PubMed  CAS  Google Scholar 

  28. Eikenberry EF, Childs B, Sheren SB, Parry DA, Craig AS, Brodsky B (1984) Crystalline fibril structure of type II collagen in lamprey notochord sheath. J Mol Biol 176: 261–277

    Article  PubMed  CAS  Google Scholar 

  29. Hulmes DJS, Miller A (1979) Quasi-hexagonal molecular packing in collagen fibrils. Nature 282: 878–880

    Article  PubMed  CAS  Google Scholar 

  30. Fraser RDB, MacRae TP, Miller A (1987) Molecular packing in type I collagen fibrils. J Mol Biol 193: 115–125

    Article  PubMed  CAS  Google Scholar 

  31. Miller A, Tocchetti D (1981) Calculated x-ray diffraction pattern from a quasi-hexago-nal model for the molecular arrangement in collagen. Int J Biol Macromol 3: 9–18

    Article  CAS  Google Scholar 

  32. Smith JW (1968) Molecular packing in native collagen. Nature 219: 157–158

    Article  PubMed  CAS  Google Scholar 

  33. Piez KA, Trus BL (1978) Sequence regularities and packing of collagen molecules. J Mol Biol 122: 419–432

    Article  PubMed  CAS  Google Scholar 

  34. Piez KA, Trus BL (1981) A new model for packing of type I collagen molecules in the native fibril. Biosci Rep 1: 801–810

    Article  PubMed  CAS  Google Scholar 

  35. Wess TJ, Hammersley AP, Wess L, Miller A (1998) Molecular packing of type I collagen in tendon. J Mol Biol 275: 255–267

    Article  PubMed  CAS  Google Scholar 

  36. Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE (2001) Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organisation. Proc Natl Aced Sci USA 98: 7307–7312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Kadler, K.E., Holmes, D.F. (2002). Electron microscope studies of collagen fibril formation in cornea, skin and tendon: Implications for collagen fibril assembly and structure in other tissues. In: Hascall, V.C., Kuettner, K.E. (eds) The Many Faces of Osteoarthritis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8133-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8133-3_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9450-0

  • Online ISBN: 978-3-0348-8133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics