Inhibition of neurogenic inflammation in preventive migraine treatment

  • Margarita Sánchez del Río
Part of the Progress in Inflammation Research book series (PIR)


Preventive pharmacological treatment of migraine aims at reducing the frequency, intensity and duration of the attacks by intervening, at the earliest stage possible, in migraine pathogenesis. The medications effective in migraine prevention conceivably act at multiple sites to raise the threshold for spreading cortical depression, to inhibit the mechanisms of vasodilation or neurogenic inflammation, or to enhance central anti-nociception. They most likely work through more than one mode of action and this review will focus on the evidence for an action in inhibiting neurogenic inflammation.


Ergot Alkaloid Neurogenic Inflammation Migraine Prophylaxis Trigeminal Nucleus Caudalis Carotid Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, cal-citonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89: 901–907PubMedCrossRefGoogle Scholar
  2. 2.
    Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43: S16–S20PubMedGoogle Scholar
  3. 3.
    Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13: 307–311PubMedCrossRefGoogle Scholar
  4. 4.
    Tuca JO, Planas JM, Parellada PP (1989) Increase in PGE2 and TXA2 in the saliva ofcommon migraine patients. Action of calcium channel blockers. Headache 29: 498–501PubMedCrossRefGoogle Scholar
  5. 5.
    Puig-Parellada P, Planas JM, Gimenez J et al (1991) Plasma and saliva levels of PG12 and TXA2 in the headache-free period of classical migraine patients. The effects of nicardipine. Headache 31: 156–158PubMedCrossRefGoogle Scholar
  6. 6.
    Chen X, Tanner K, Levine JD (1999) Mechanical sensitization of cutaneous c-fiber nociceptors by prostaglandin E2 in the rat. Neurosci Lett 267: 105–108PubMedCrossRefGoogle Scholar
  7. 7.
    Minami T, Okuda-Ashitaka E, Hori Y et al (1999) Involvement of primary afferent c-fibres in touch-evoked pain (allodynia) induced by prostaglandin E2. Eur J Neurosci 11: 1849–1856PubMedCrossRefGoogle Scholar
  8. 8.
    Coggeshall RE, Carlton SM (1999) Evidence for an inflammation-induced change in the local glutamatergic regulation of postganglionic sympathetic efferents. Pain 83: 163–168PubMedCrossRefGoogle Scholar
  9. 9.
    Ferreira SH (1993) The role of interleukins and nitric oxide in the mediation of inflam-matory pain and its control by peripheral analgesics. Drugs 46 (Suppl) 1: 1–9Google Scholar
  10. 10.
    Nakamura M, Ferreira SH (1987) A peripheral sympathetic component in inflammatory hyperalgesia. Eur J Pharmacol 135: 145–153PubMedCrossRefGoogle Scholar
  11. 11.
    Kinnman E, Levine JD (1995) Involvement of the sympathetic postganglionic neuron in capsaicin-induced secondary hyperalgesia in the rat. Neuroscience 65: 283–291PubMedCrossRefGoogle Scholar
  12. 12.
    Khasar SG, Miao FJ, Levine JD (1995) Inflammation modulates the contribution of receptor-subtypes to bradykinin-induced hyperalgesia in the rat. Neuroscience 69: 685–690PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson KW, Phebus LA, Cohen ML (1998) Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res 51: 219–244PubMedCrossRefGoogle Scholar
  14. 14.
    Schmuck K, Ullmer C, Kalkman HO et al (1996) Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache? Eur J Neurosci 8: 959–967PubMedCrossRefGoogle Scholar
  15. 15.
    Peroutka SJ (1990) Developments in 5-hydroxytryptamine receptor pharmacology in migraine. Neurol Clin 8: 829–839PubMedGoogle Scholar
  16. 16.
    Hoyer D, Clarke DE, Fozard JR et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203PubMedGoogle Scholar
  17. 17.
    Martin GR, Bolofo ML, Giles H (1992) Inhibition of endothelium-dependent vasorelaxation by arginine analogues: a pharmacological analysis of agonist and tissue dependence. Br J Pharmacol 105: 643–652PubMedCrossRefGoogle Scholar
  18. 18.
    Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70: 1313–1319PubMedCrossRefGoogle Scholar
  19. 19.
    Aley KO, McCarter G, Levine JD (1998) Nitric oxide signaling in pain and nociceptor sensitization in the rat. J Neurosci 18: 7008–7014PubMedGoogle Scholar
  20. 20.
    Yonehara N, Yoshimura M (1999) Effect of nitric oxide on substance P release from the peripheral endings of primary afferent neurons. Neurosci Lett 271: 199–201PubMedCrossRefGoogle Scholar
  21. 21.
    Garry MG, Richardson JD, Hargreaves KM (1994) Sodium nitroprusside evokes the release of immunoreactive calcitonin gene-related peptide and substance P from dorsal horn slices via nitric oxide-dependent and nitric oxide-independent mechanisms. J Neurosci 14: 4329–4337PubMedGoogle Scholar
  22. 22.
    Tournois C, Mutel V, Manivet P et al (1998) Cross-talk between 5-hydroxytryptamine receptors in a serotonergic cell line. Involvement of arachidonic acid metabolism. J Biol Chem 273: 17498–17503PubMedCrossRefGoogle Scholar
  23. 23.
    Bonhaus DW, Flippin LA, Greenhouse RJ et al (1999) RS-127445: a selective, high affinity, orally bioavailable 5-HT2B receptor antagonist. Br J Pharmacol 127: 1075–1082PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson AD, Wainscott DB, Lucaites VL et al (1997) Selective 5HT2B receptor antagonists block mCPP-induced dural extravasation (abstract). Cephalalgia 17: 342Google Scholar
  25. 25.
    Moskowitz MA, Macfarlane R (1993) Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 5: 159–177PubMedGoogle Scholar
  26. 26.
    Cohen Z, Bouchelet I, Olivier A et al (1999) Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J Cereb Blood Flow Metab 19: 908–917PubMedCrossRefGoogle Scholar
  27. 27.
    Terron JA (1998) Involvement of the 5-HT7 receptor in craniovascular vasodilatation: potential impact in migraine. Proc West Pharmacol Soc 41: 247–251PubMedGoogle Scholar
  28. 28.
    Terron JA, Falcon-Neri A (1999) Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol 127: 609–616PubMedCrossRefGoogle Scholar
  29. 29.
    Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14: 35–46PubMedCrossRefGoogle Scholar
  30. 30.
    Peroutka SJ (1988) Antimigraine drug interactions with serotonin receptor subtypes in human brain. Ann Neurol 23: 500–504PubMedCrossRefGoogle Scholar
  31. 31.
    Moskowitz MA, Waeber C (1997) Neuronal pathophysiology of migraine as a basis for acute treatment with 5-HT receptor ligands. In: H Baumgarten, M Gother (eds): Handbook of experimental pharmacology, volume 128. Springer Verlag, Berlin, 613–635Google Scholar
  32. 32.
    Cryan JF, Kelliher P, Kelly JP, Leonard BE (1999) Comparative effects of serotonergic agonists with varying efficacy at the 5-HT(1A) receptor on core body temperature: modification by the selective 5-HT(1A) receptor antagonist WAY 100635. J Psychopharmacol 13: 278–283PubMedCrossRefGoogle Scholar
  33. 33.
    Ebenezer IS, Parrott RF, Vellucci SV (1999) Effects of the 5-HT1A receptor agonist 8OH-DPAT on operant food intake in food-deprived pigs. Physiol Behav 67: 213–217PubMedCrossRefGoogle Scholar
  34. 34.
    Esteban S, Llado J, Sastre-Coll A, Garcia-Sevilla JA (1999) Activation and desensitization by cyclic antidepressant drugs of alpha 2- autoreceptors, alpha 2-heteroreceptors and 5-HT1A-autoreceptors regulating monoamine synthesis in the rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 360: 135–143PubMedCrossRefGoogle Scholar
  35. 35.
    Markowitz S, Saito K, Moskowitz MA (1988) Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8: 83–91PubMedCrossRefGoogle Scholar
  36. 36.
    Tfelt-Hansen P, Standnes B, Kangasniemi P et al (1984) Timolol vs propranolol vs placebo in common migraine prophylaxis: a double-blind multicenter trial. Acta Neurol Scand 69: 1–8PubMedCrossRefGoogle Scholar
  37. 37.
    Carroll JD, Reidy M, Savundra PA et al (1990) Long-acting propranolol in the prophylaxis of migraine: a comparative study of two doses. Cephalalgia 10: 101–105PubMedCrossRefGoogle Scholar
  38. 38.
    Ryan RE (1984) Comparative study of nadolol and propranolol in prophylactic treatment of migraine. Am Heart J 108: 1156–1159PubMedCrossRefGoogle Scholar
  39. 39.
    Stensrud P, Sjaastad 0 (1980) Comparative trial of Tenormin (atenolol) and Inderal (propranolol) in migraine. Headache 20: 204–207PubMedCrossRefGoogle Scholar
  40. 40.
    Olsson JE, Behring HC, Forssman B et al (1984) Metoprolol and propranolol in migraine prophylaxis: a double-blind multicenter study. Acta Neurol Scand 70: 160–168PubMedCrossRefGoogle Scholar
  41. 41.
    Buzzi MG, Sakas DE, Moskowitz MA (1989) Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur J Pharmacol 165: 251–258PubMedCrossRefGoogle Scholar
  42. 42.
    Kaube H, Hoskin KL, Goadsby PJ (1993) Intravenous acetylsalicylic acid inhibits central trigeminal neurons in the dorsal horn of the upper cervical spinal cord in the cat. Headache 33: 541–544PubMedCrossRefGoogle Scholar
  43. 43.
    Ellrich J, Schepelmann K, Pawlak M, Messlinger K (1999) Acetylsalicylic acid inhibits meningeal nociception in rat. Pain 81: 7–14PubMedCrossRefGoogle Scholar
  44. 44.
    Diener HC (1999) Efficacy and safety of intravenous acetylsalicylic acid lysinate corn-pared to subcutaneous sumatriptan and parenteral placebo in the acute treatment of migraine. A double-blind, double-dummy, randomized, multicenter, parallel group study. Cephalalgia 19: 581–588PubMedCrossRefGoogle Scholar
  45. 45.
    Lipton RB, Stewart WF, Ryan RE et al (1998) Efficacy and safety of acetaminophen, aspirin, and caffeine in alleviating migraine headache pain: three double-blind, randomized, placebo-controlled trials. Arch Neurol 55: 210–217Google Scholar
  46. 46.
    Buring JE, Peto R, Hennekens CH (1990) Low-dose aspirin for migraine prophylaxis. J Am Med Assoc 264: 1711–1713CrossRefGoogle Scholar
  47. 47.
    Sances G, Martignoni E, Fioroni L et al (1990) Naproxen sodium in menstrual migraine prophylaxis: a double-blind placebo controlled study. Headache 30: 705–709PubMedCrossRefGoogle Scholar
  48. 48.
    Welch KM, Ellis DJ, Keenan PA (1985) Successful migraine prophylaxis with naproxen sodium. Neurology 35: 1304–1310PubMedCrossRefGoogle Scholar
  49. 49.
    Ziegler DK, Ellis DJ (1985) Naproxen in prophylaxis of migraine. Arch Neurol 42: 582–584PubMedCrossRefGoogle Scholar
  50. 50.
    Yaron I, Shirazi I, Judovich R et al (1999) Fluoxetine and amitriptyline inhibit nitric oxide, prostaglandin E2, and hyaluronic acid production in human synovial cells and synovial tissue cultures. Arthritis Rheum 42: 2561–2568PubMedCrossRefGoogle Scholar
  51. 51.
    Couch JR, Hassanein RS (1979) Amitriptyline in migraine prophylaxis. Arch Neurol 36: 695–699PubMedCrossRefGoogle Scholar
  52. 52.
    Oguzhanoglu A, Sahiner T, Kurt T, Akalin 0 (1999) Use of amitriptyline and fluoxetine in prophylaxis of migraine and tension-type headaches. Cephalalgia 19: 531–532PubMedCrossRefGoogle Scholar
  53. 53.
    Steiner TJ, Ahmed F, Findley LJ et al (1998) S-fluoxetine in the prophylaxis of migraine: a phase II double-blind randomized placebo-controlled study. Cephalalgia 18: 283–286PubMedCrossRefGoogle Scholar
  54. 54.
    Hashimoto M, Yamamoto Y, Takagi H (1997) Effects of KB-2796 on plasma extravasation following antidromic trigeminal stimulation in the rat. Res Commun Mol Pathol Pharmacol 97: 79–94PubMedGoogle Scholar
  55. 55.
    Martinez LL, Aparecida DO, Fortes ZB (1999) Influence of verapamil and diclofenac on leukocyte migration in rats. Hypertension 34: 997–1001PubMedCrossRefGoogle Scholar
  56. 56.
    Markley HG, Cheronis JC, Piepho RW (1984) Verapamil in prophylactic therapy of migraine. Neurology 34: 973–976PubMedCrossRefGoogle Scholar
  57. 57.
    Solomon GD, Steel JG, Spaccavento LJ (1983) Verapamil prophylaxis of migraine. A double-blind, placebo-controlled study. J Am Med Assoc 250: 2500–2502CrossRefGoogle Scholar
  58. 58.
    Sorensen PS, Hansen K, Olesen J (1986) A placebo-controlled, double-blind, cross-over trial of flunarizine in common migraine. Cephalalgia 6: 7–14PubMedCrossRefGoogle Scholar
  59. 59.
    Frenken CW, Nuijten ST (1984) Flunarizine, a new preventive approach to migraine. A double-blind comparison with placebo. Clin Neurol Neurosurg 86: 17–20CrossRefGoogle Scholar
  60. 60.
    Ryan RE (1968) Double-blind crossover comparison of be-105, methysergide and placebo in the prophylaxis of migraine headache. Headache 8: 118–126PubMedCrossRefGoogle Scholar
  61. 61.
    Gillies D, Sills M, Forsythe I (1986) Pizotifen (Sanomigran) in childhood migraine. A double-blind controlled trial. Eur Neurol 25: 32–35PubMedCrossRefGoogle Scholar
  62. 62.
    Lee WS, Limmroth V, Ayata C et al (1995) Peripheral GABA-A receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 116: 1661–1667PubMedCrossRefGoogle Scholar
  63. 63.
    Klapper J (1997) Divalproex sodium in migraine prophylaxis: a dose-controlled study. Cephalalgia 17: 103–108PubMedCrossRefGoogle Scholar
  64. 64.
    Hering R, Kuritzky A (1992) Sodium valproate in the prophylactic treatment of migraine: a double-blind study versus placebo. Cephalalgia 12: 81–84PubMedCrossRefGoogle Scholar
  65. 65.
    Pradalier A, Serratrice G, Collard M et al (1989) Long-acting propranolol in migraine prophylaxis: results of a double-blind, placebo-controlled study. Cephalalgia 9: 247–253PubMedGoogle Scholar
  66. 66.
    Martin GR (1994) Vascular receptors for 5-hydroxytryptamine: distribution, function and classification. Pharmacol Ther 62: 283–324PubMedCrossRefGoogle Scholar
  67. 67.
    Peroutka SJ (1990) The pharmacology of current anti-migraine drugs. Headache 30: 5–11PubMedCrossRefGoogle Scholar
  68. 68.
    Gobert A, Millan MJ (1999) Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (—) pindolol alone and in association with 5-HT reuptake inhibitors: comparative roles of beta-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology 21: 268–284PubMedCrossRefGoogle Scholar
  69. 69.
    Newman-Tancredi A, Chaput C, Gavaudan S et al (1998) Agonist and antagonist actions of (—)pindolol at recombinant, human serotonin 1A (5-HT1A) receptors. Neuropsychopharmacology 18: 395–398PubMedCrossRefGoogle Scholar
  70. 70.
    Chugani DC, Niimura K, Chaturvedi S (1999) Increased brain serotonin synthesis in migraine. Neurology 53: 1473–1479PubMedCrossRefGoogle Scholar
  71. 71.
    Schoenen J, Maertens DN, Timsit-Berthier M, Timsit M (1986) Contingent negative variation and efficacy of beta-blocking agents in migraine. Cephalalgia 6: 229–233PubMedCrossRefGoogle Scholar
  72. 72.
    Saxena PR, Heiligers JP, Villalon CM, Ferrari MD (1992) Effects of tertatolol, a betaadrenoceptor antagonist with agonist affinity at 5-HT1A receptors, in an animal model of migraine: comparison with propranolol and pindolol. Eur J Pharmacol 220: 79–86PubMedCrossRefGoogle Scholar
  73. 73.
    Anderson R, Ramafi G, Theron AJ (1996) Membrane stabilizing, anti-oxidative interactions of propranolol and dexpropranolol with neutrophils. Biochem Pharmacol 52: 341–349PubMedCrossRefGoogle Scholar
  74. 74.
    Stensrud P, Sjaastad 0 (1974) Clinical trial of a new anti-bradykinin, anti-inflammatory drug, ketoprofen in migraine prophylaxis. Headache 14: 96–100PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson RH, Hornabrook RW, Lambie DG (1986) Comparison of mefenamic acid and propranolol with placebo in migraine prophylaxis. Acta Neurol Scand 73: 490–492PubMedCrossRefGoogle Scholar
  76. 76.
    Cashman JN (1996) The mechanisms of action of NSAIDs in analgesia. Drugs 52 (Suppl 5): 13–23PubMedCrossRefGoogle Scholar
  77. 77.
    Kurumbail RG, Stevens AM, Gierse JK et al (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384: 644–648PubMedCrossRefGoogle Scholar
  78. 78.
    Stuhlmeier KM, Li H, Kao JJ (1999) Ibuprofen: new explanation for an old phenomenon. Biochem Pharmacol 57: 313–320PubMedCrossRefGoogle Scholar
  79. 79.
    Carroll JD, Reidy M, Savundra PA et al (1990) Long-acting propranolol in the prophylaxis of migraine: a comparative study of two doses. Cephalalgia 10: 101–105PubMedCrossRefGoogle Scholar
  80. 80.
    Rouaud C, Delaforge M, Anger-Leroy M et al (1999) The cyclo-oxygenase-dependent regulation of rabbit vein contraction: evidence for a prostaglandin E2-mediated relaxation. Br J Pharmacol 126: 35–44PubMedCrossRefGoogle Scholar
  81. 81.
    Rhodes KF, Buckingham JC, Kennard C (1999) The inhibition of nicotine-evoked relaxation of the guinea-pig isolated basilar artery by some analgesic drugs and progesterone. Br J Pharmacol 126: 1003–1008PubMedCrossRefGoogle Scholar
  82. 82.
    Chen X, Levine JD (1999) NOS inhibitor antagonism of PGE2-induced mechanical sen-sitization of cutaneous c-fiber nociceptors in the rat. J Neurophysiol 81: 963–966PubMedGoogle Scholar
  83. 83.
    Harrigan M R, Tuteja S, Neudeck B L (1997) Indomethacin in the management of elevated intracranial pressure: a review. J Neurotrauma 14: 637–650PubMedCrossRefGoogle Scholar
  84. 84.
    Castellano A E, Micieli G, Bellantonio P et al. (1998) Indomethacin increases the effect of isosorbide dinitrate on cerebral hemodynamic in migraine patients: pathogenetic and therapeutic implications. Cephalalgia 18: 622–630PubMedCrossRefGoogle Scholar
  85. 85.
    Mallet L,Kuyumjian J (1998) Indomethacin-induced behavioral changes in an elder-ly patient with dementia. Ann Pharmacother 32: 201–203PubMedCrossRefGoogle Scholar
  86. 86.
    Bromm B, Rundshagen I, Scharein E (1991) Central analgesic effects of acetylsalicylic acid in healthy men. Arzneimittelforschung 41: 1123–1129PubMedGoogle Scholar
  87. 87.
    Attal N, Kayser V, Eschalier A et al (1988) Behavioural and electrophysiological evidence for an analgesic effect of a non-steroidal anti-inflammatory agent, sodium diclofenac. Pain 35: 341–348PubMedCrossRefGoogle Scholar
  88. 88.
    Silberstein SD (1998) Methysergide. Cephalalgia 18: 421–435PubMedCrossRefGoogle Scholar
  89. 89.
    Martucci N, Manna V, Agnoli A (1985) Antidepressant drugs and migraine. Cephalalgia 5 (Suppl 2): 225–228PubMedGoogle Scholar
  90. 90.
    Kalkman HO (1994) Is migraine prophylactic activity caused by 5-HT2B or 5-HT2c receptor blockade? Life Sci 54: 641–644PubMedCrossRefGoogle Scholar
  91. 91.
    Saxena PR, Verdouw PD (1984) Effects of methysergide and 5-hydroxytryptamine on carotid blood flow distribution in pigs: further evidence for the presence of atypical 5-HT receptors. Br J Pharmacol 82: 817–826PubMedCrossRefGoogle Scholar
  92. 92.
    Villalon CM, De Vries P, Rabelo G et al (1999) Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha 2-adrenoceptors. Br J Pharmacol 126: 585–594PubMedCrossRefGoogle Scholar
  93. 93.
    Mylecharane EJ (1991) 5-HT2 receptor antagonists and migraine therapy. J Neurol 238 (Suppl 1): S45–S52PubMedCrossRefGoogle Scholar
  94. 94.
    Eisenach JC, Gebhart GF (1995) Intrathecal amitriptyline acts as an n-methyl-d-aspartate receptor antagonist in the presence of inflammatory hyperalgesia in rats. Anesthesiology 83: 1046–1054PubMedCrossRefGoogle Scholar
  95. 95.
    Sukenaga A, Tani E, Fukumori T, Maeda Y (1984) Responses of isolated canine basilar artery and human platelet to chlorpromazine and amitriptyline. Stroke 15: 295–300PubMedCrossRefGoogle Scholar
  96. 96.
    Cai Z, McCaslin PP (1992) Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduce kainate-and N-methyl-Daspartate-induced intracellular Ca’ levels in neuronal culture. Eur J Pharmacol 219: 53–57PubMedCrossRefGoogle Scholar
  97. 97.
    Rothrock JF (1997) Clinical studies of valproate for migraine prophylaxis. Cephalalgia 17: 81–83PubMedCrossRefGoogle Scholar
  98. 98.
    Loscher W, Bohme G, Schafer H, Kochen W (1981) Effect of metabolites of valproic acid on the metabolism of GABA in brain and brain nerve endings. Neuropharmacology 20: 1187–1192PubMedCrossRefGoogle Scholar
  99. 99.
    Loscher W (1993) In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 160: 177–180PubMedCrossRefGoogle Scholar
  100. 100.
    Cutrer FM, Limmroth V, Moskowitz MA (1997) Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia 17: 93–100PubMedCrossRefGoogle Scholar
  101. 101.
    Van den Berg RJ, Kok P, Voskuyl RA (1993) Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 93: 279–287PubMedGoogle Scholar
  102. 102.
    Van Erp MG, Van Dongen AM, Van den Berg RJ (1990) Voltage-dependent action of valproate on potassium channels in frog node of Ranvier. Eur J Pharmacol 184: 151–161PubMedCrossRefGoogle Scholar
  103. 103.
    Lee W S, Limmroth V, Ayata C et al (1995) Peripheral GABAA receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 116: 1661–1667PubMedCrossRefGoogle Scholar
  104. 104.
    Cutrer FM, Limmroth V, Ayata G, Moskowitz MA (1995) Attenuation by valproate of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 116: 3199–3204PubMedCrossRefGoogle Scholar
  105. 105.
    Peroutka SJ (1997) Dopamine and migraine. Neurology 49: 650–656PubMedCrossRefGoogle Scholar
  106. 106.
    Greenberg DA (1986) Calcium channel antagonists and the treatment of migraine. Clin Neuropharmacol 9: 311–328PubMedCrossRefGoogle Scholar
  107. 107.
    Weizman R, Getslev V, Pankova IA et al (1999) Pharmacological interaction of the calcium channel blockers verapamil and flunarizine with the opioid system. Brain Res 818: 187–195PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Margarita Sánchez del Río
    • 1
  1. 1.Headache Unit, Department of NeurologyFundación Hospital Alcorcón, Juan Carlos I UniversityMadridSpain

Personalised recommendations