Advertisement

Models of neurogenic inflammation as it relates to migraine

  • Uwe Reuter
  • Guy Arnold
Chapter
  • 63 Downloads
Part of the Progress in Inflammation Research book series (PIR)

Abstract

For more than half a century, migraine was believed to be a vascular disorder with the aura attributed to cerebral vasoconstriction and ischemia and the headache to dilation and inflammation of extracranial arteries. However, there is mounting evidence that cortical spreading depression is the mechanism underlying the migraine aura and that (neurogenic) inflammation is more important than vasodilation in the migraine headache. This chapter focuses on the experimental models related to the putative migraine mechanisms of cortical spreading depression and neurogenic inflammation (Tab. 1).

Keywords

Dura Mater Trigeminal Ganglion Vasoactive Intestinal Polypeptide Migraine Headache Cortical Spreading Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mayberg M, Langer RS, Zervas NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man. Science 213: 228–230PubMedCrossRefGoogle Scholar
  2. 2.
    Feindel W, Penfield W, McNaughton F (1960) The tentorial nerves and localization of intracranial pain in man. Neurology 10: 555–563PubMedCrossRefGoogle Scholar
  3. 3.
    Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223: 46–56PubMedCrossRefGoogle Scholar
  4. 4.
    Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1: 230–252PubMedGoogle Scholar
  5. 5.
    Liu-Chen LY, Liszczak TM, King JC, Moskowitz MA (1986) Immunoelectron microscopic study of substance P-containing fibers in feline cerebral arteries. Brain Res 369: 12–20PubMedCrossRefGoogle Scholar
  6. 6.
    Jansen I, Alafaci C, McCulloch J et al (1991) Tachykinins (substance P, neurokinin A, neuropeptide K, and neurokinin B) in the cerebral circulation: vasomotor responses in vitro and in situ. J Cereb Blood Flow Metab 11: 567–575PubMedCrossRefGoogle Scholar
  7. 7.
    Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44: 97–112PubMedCrossRefGoogle Scholar
  8. 8.
    Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA (1992) Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 48: 187–203PubMedCrossRefGoogle Scholar
  9. 9.
    Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7: 4129–4136PubMedGoogle Scholar
  10. 10.
    Yu XJ, Waeber C, Castanon N et al (1996) 5-Carboxamido-tryptamine, CP-122,288 and dihydroergotamine but not sumatriptan, CP-93,129, and serotonin-S-O-carboxymethyl-glycyl-tyrosinamide block dural plasma protein extravasation in knockout mice that lack 5-hydroxytryptamine1B receptors. Mol Pharmacol 49: 761–765PubMedGoogle Scholar
  11. 11.
    Johnson KW, Phebus LA (1998) A fluorescence-based method for assessing dural protein extravasation induced by trigeminal ganglion stimulation. J Neurosci Methods 81: 19–24PubMedCrossRefGoogle Scholar
  12. 12.
    Huang Z, Byun B, Matsubara T, Moskowitz MA (1993) Time-dependent blockade of neurogenic plasma extravasation in dura mater by 5-HT1B/D agonists and endopeptidase. Br J Pharmacol 108: 331–335PubMedCrossRefGoogle Scholar
  13. 13.
    Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on durai vessel diameter in the anaesthetized rat. Cephalalgia 17: 518–524PubMedCrossRefGoogle Scholar
  14. 14.
    Buzzi MG, Dimitriadou V, Theoharides TC, Moskowitz MA (1992) 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation. Brain Res 583: 137–149PubMedCrossRefGoogle Scholar
  15. 15.
    Geppetti P, Del Bianco E, Santicioli P et al (1990) Release of sensory neuropeptides from dural venous sinuses of guinea pig. Brain Res 510: 58–62PubMedCrossRefGoogle Scholar
  16. 16.
    Russell LC, Burchiel KJ (1984) Neurophysiological effects of capsaicin. Brain Res 320: 165–176PubMedGoogle Scholar
  17. 17.
    Moskowitz MA, Brody M, Liu-Chen LY (1983) In vitro release of immunoreactive substance P from putative afferent nerve endings in bovine pia arachnoid. Neuroscience 9: 809–814PubMedCrossRefGoogle Scholar
  18. 18.
    Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99: 202–206PubMedCrossRefGoogle Scholar
  19. 19.
    Markowitz S, Saito K, Moskowitz MA (1988) Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8: 83–91PubMedCrossRefGoogle Scholar
  20. 20.
    Gamse R, Holzer P, Lembeck F (1980) Decrease of substance P in primary afferent neurons and impairment of neurogenic plasma extravasation by capsaicin. Br J Pharmacol 68: 207–213PubMedCrossRefGoogle Scholar
  21. 21.
    Markowitz S, Saito K, Buzzi MG, Moskowitz MA (1989) The development of neurogenic plasma extravasation in the rat dura mater does not depend upon the degranulation of mast cells. Brain Res 477: 157–165PubMedCrossRefGoogle Scholar
  22. 22.
    Williams S, Evan G, Hunt SP (1990) Spinal c-fos induction by sensory stimulation in neonatal rats. Neurosci Lett 109: 309–314PubMedCrossRefGoogle Scholar
  23. 23.
    Nozaki K, Moskowitz MA, Boccalini P (1992) CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol 106: 409–415PubMedCrossRefGoogle Scholar
  24. 24.
    Cutrer FM, Moussaoui S, Garret C, Moskowitz MA (1995) The non-peptide neurokinin-1 antagonist, RPR 100893, decreases c-fos expression in trigeminal nucleus caudalis following noxious chemical meningeal stimulation. Neuroscience 64: 741–750PubMedCrossRefGoogle Scholar
  25. 25.
    Cutrer FM, Schoenfeld D, Limmroth V et al (1995) Suppression by the sumatriptan analogue, CP-122,288 of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 114: 987–992PubMedCrossRefGoogle Scholar
  26. 26.
    Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682: 167–181PubMedCrossRefGoogle Scholar
  27. 27.
    Tassorelli C, Joseph SA (1995) NADPH-diaphorase activity and fos expression in brain nuclei following nitroglycerin administration. Brain Res 695: 37–44PubMedCrossRefGoogle Scholar
  28. 28.
    Olesen J, Iversen HK, Thomsen LL (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4: 1027–1030PubMedCrossRefGoogle Scholar
  29. 29.
    Lassen LH, Ashina M, Christiansen I et al (1997) Nitric oxide synthase inhibition in migraine [letter]. Lancet 349: 401–402PubMedCrossRefGoogle Scholar
  30. 30.
    Knyihar-Csillik E, Vecsei L (1999) Effect of a nitric oxide donor on nitroxergic nerve fibers in the rat dura mater. Neurosci Lett 260: 97–100PubMedCrossRefGoogle Scholar
  31. 31.
    Buzzi MG, Carter WB, Shimizu T et al (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30: 1193–1200PubMedCrossRefGoogle Scholar
  32. 32.
    Saito K, Markowitz S, Moskowitz MA (1988) Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches. Ann Neurol 24: 732–737PubMedCrossRefGoogle Scholar
  33. 33.
    Buzzi MG, Moskowitz MA (1991) Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia 11: 165–168PubMedCrossRefGoogle Scholar
  34. 34.
    Nilsson T, Longmore J, Shaw D et al (1999) Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br J Pharmacol 128: 1133–1140PubMedCrossRefGoogle Scholar
  35. 35.
    Razzaque Z, Heald MA, Pickard JD et al (1999) Vasoconstriction in human isolated middlemeningeal arteries: determining the contribution of 5-HTIB- and 5-HT1F-receptor activation. Br J Clin Pharmacol 47: 75–82CrossRefGoogle Scholar
  36. 36.
    Shepheard S, Edvinsson L, Cumberbatch M et al (1999) Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 19: 851–858PubMedCrossRefGoogle Scholar
  37. 37.
    Johnson KW, Schaus JM, Durkin MM et al (1997) 5-HT1F receptor agonists inhibit neurogenic durai inflammation in guinea pigs. Neuroreport 8: 2237–2240PubMedCrossRefGoogle Scholar
  38. 38.
    Goldstein DJ, Wang O, Saper JR et al (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17: 785–790PubMedCrossRefGoogle Scholar
  39. 39.
    Martin GR, Robertson AD, MacLennan SJ et al (1997) Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan). Br J Pharmacol 121: 157–164PubMedCrossRefGoogle Scholar
  40. 40.
    Williamson DJ, Shepheard SL, Hill RG, Hargreaves RJ (1997) The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur J Pharmacol 328: 61–64PubMedCrossRefGoogle Scholar
  41. 41.
    Buzzi MG, Sakas DE, Moskowitz MA (1989) Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur J Pharmacol 165: 251–258PubMedCrossRefGoogle Scholar
  42. 42.
    Lobo BL, Landy S (1994) Recommendations for the emergency treatment of migraine headache. J Tenn Med Assoc 87: 53–54PubMedGoogle Scholar
  43. 43.
    Gallagher RM (1986) Emergency treatment of intractable migraine. Headache 26: 74–75PubMedCrossRefGoogle Scholar
  44. 44.
    Mason RT, Peterfreund RA, Sawchenko PE et al (1984) Release of the predicted calcitonin gene-related peptide from cultured rat trigeminal ganglion cells. Nature 308: 653–655PubMedCrossRefGoogle Scholar
  45. 45.
    Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23: 193–196PubMedCrossRefGoogle Scholar
  46. 46.
    Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16: 69–75PubMedCrossRefGoogle Scholar
  47. 47.
    Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89: 901–907PubMedCrossRefGoogle Scholar
  48. 48.
    Durham PL, Russo AF (1999) Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci 19: 3423–3429PubMedGoogle Scholar
  49. 49.
    Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28: 183–187PubMedCrossRefGoogle Scholar
  50. 50.
    Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33: 48–56PubMedCrossRefGoogle Scholar
  51. 51.
    Knyihar-Csillik E, Tajti J, Samsam M et al (1998) Depletion of calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat after electrical stimulation of the Gasserian ganglion. Exp Brain Res 118: 111–114PubMedCrossRefGoogle Scholar
  52. 52.
    Samsam M, Covenas R, Ahangari R et al (1999) Alterations in neurokinin A-, substance P- and calcitonin gene-related peptide immunoreactivities in the caudal trigeminal nucleus of the rat following electrical stimulation of the trigeminal ganglion. Neurosci Lett 261: 179–182PubMedCrossRefGoogle Scholar
  53. 53.
    Pedersen-Bjergaard U, Nielsen LB, Jensen K et al (1989) Algesia and local responses induced by neurokinin A and substance P in human skin and temporal muscle. Peptides 10: 1147–1152PubMedCrossRefGoogle Scholar
  54. 54.
    Pedersen-Bjergaard U, Nielsen LB, Jensen K et al (1991) Calcitonin gene-related peptide, neurokinin A and substance P: effects on nociception and neurogenic inflammation in human skin and temporal muscle. Peptides 12: 333–337PubMedCrossRefGoogle Scholar
  55. 55.
    McDuffie JE, Coaxum SD, Maleque MA (1999) 5-hydroxytryptamine evokes endothelial nitric oxide synthase activation in bovine aortic endothelial cell cultures. Proc Soc Exp Biol Med 221: 386–390PubMedCrossRefGoogle Scholar
  56. 56.
    Ishida T, Kawashima S, Hirata K, Yokoyama M (1998) Nitric oxide is produced via 5HTIB and 5-HT2B receptor activation in human coronary artery endothelial cells. Kobe J Med Sci 44: 51–63PubMedGoogle Scholar
  57. 57.
    Stepien A, Chalimoniuk M, Strosznajder J (1999) Serotonin 5HTIB/1D receptor agonists abolish NMDA receptor-evoked enhancement of nitric oxide synthase activity and cGMP concentration in brain cortex slices. Cephalalgia 19: 859–865PubMedCrossRefGoogle Scholar
  58. 58.
    Wei EP, Moskowitz MA, Boccalini P, Kontos HA (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilation in feline cerebral arterioles. Circ Res 70: 1313–1319PubMedCrossRefGoogle Scholar
  59. 59.
    Lee WS, Limmroth V, Ayata C et al (1995) Peripheral GABA receptor-mediated effects of sodium valproate on durai plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 116: 1661–1667PubMedCrossRefGoogle Scholar
  60. 60.
    Limmroth V, Lee WS, Moskowitz MA (1996) GABAA-receptor-mediated effects of progesterone, its ring-A-reduced metabolites and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br J Pharmacol 117: 99–104PubMedCrossRefGoogle Scholar
  61. 61.
    Okuno T, Itakura T, Lee TJ et al (1994) Cerebral pial arterial innervation with special reference to GABAergic innervation. J Auton Nery Syst 49 (Suppl): S105–S110CrossRefGoogle Scholar
  62. 62.
    Cutrer FM, Moskowitz MA (1996) The actions of valproate and neurosteroids in a model of trigeminal pain. Headache 36: 579–585PubMedCrossRefGoogle Scholar
  63. 63.
    Bileviciute I, Stenfors C, Theodorsson E, Lundeberg T (1998) Unilateral injection of calcitonin gene-related peptide (CGRP) induces bilateral oedema formation and release of CGRP-like immunoreactivity in the rat hindpaw. Br J Pharmacol 125: 1304–1312PubMedCrossRefGoogle Scholar
  64. 64.
    Bourgoin S, Pohl M, Benoliel JJ et al (1992) Gamma-aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related pep. Brain Res 583: 344–348PubMedCrossRefGoogle Scholar
  65. 65.
    Akasu T, Munakata Y, Tsurusaki M, Hasuo H (1999) Role of GABAA and GABAC receptors in the biphasic GABA responses in neurons of the rat major pelvic ganglia. J Neurophysiol 82: 1489–1496PubMedGoogle Scholar
  66. 66.
    Kataoka Y, Niwa M, Yamashita K, Taniyama K (1994) GABA receptor function in the parasympathetic ganglia. Jpn J Physiol 44 (Suppl 2): S125–S129Google Scholar
  67. 67.
    Kawatani M, Whitney T, Booth AM, De Groot WC (1989) Excitatory effect of substance P in parasympathetic ganglia of cat urinary bladder. Am J Physiol 257: R1450–R1456PubMedGoogle Scholar
  68. 68.
    Uddman R, Tajti J, Moller S et al (1999) Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res 826: 193–199PubMedCrossRefGoogle Scholar
  69. 69.
    Tajti J, Uddman R, Moller S et al (1999) Messenger molecules and receptor mRNA in the human trigeminal ganglion. J Auton Nery Syst 76: 176–183CrossRefGoogle Scholar
  70. 70.
    Delepine L, Aubineau P (1997) Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion. Exp Neurol 147: 389–400PubMedCrossRefGoogle Scholar
  71. 71.
    Goadsby PJ, Edvinsson L (1996) Neuropeptide changes in a case of chronic paroxysmal hemicrania — evidence for trigemino-parasympathetic activation. Cephalalgia 16: 448–450PubMedCrossRefGoogle Scholar
  72. 72.
    May A, Shepheard SL, Knorr M et al (1998) Retinal plasma extravasation in animals but not in humans: implications for the pathophysiology of migraine. Brain 121: 1231–1237PubMedCrossRefGoogle Scholar
  73. 73.
    Ebersberger A, Ringkamp M, Reeh PW, Handwerker HO (1997) Recordings from brain stem neurons responding to chemical stimulation of the subarachnoid space. J Neurophysiol 77: 3122–3133PubMedGoogle Scholar
  74. 74.
    Papagallo M, Szabo Z, Esposito G et al (1999) Imaging neurogenic inflammation in patients with migraine headaches (abstract). Neurology 52: A274–A275Google Scholar
  75. 75.
    Goebel H, Czech N, Heinze-Kuhn A et al (2001) Evidence of regional plasma extravasation in cluster headache using Tc-99m albumin SPECT. Cephalalgia 20: 287–287Google Scholar
  76. 76.
    Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384: 560–564PubMedCrossRefGoogle Scholar
  77. 77.
    Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79: 964–982PubMedGoogle Scholar
  78. 78.
    Burstein R, Yarnitsky D, Goor-Aryeh I et al (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47: 614–624PubMedCrossRefGoogle Scholar
  79. 79.
    Strassman A, Mason P, Moskowitz M, Maciewicz R (1994) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379: 242–250CrossRefGoogle Scholar
  80. 80.
    Davis KD, Dostrovsky JO (1988) Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. J Neurophysiol 59: 648–666PubMedGoogle Scholar
  81. 81.
    Ray BS, Wolff HG (1940) Pain sensitive structures of the head and their significance in headache. Arch Surg 41: 813–856CrossRefGoogle Scholar
  82. 82.
    Lambert GA, Zagami AS, Bogduk N, Lance JW (1991) Cervical spinal cord neurons receiving sensory input from the cranial vasculature. Cephalalgia 11:75–85PubMedCrossRefGoogle Scholar
  83. 83.
    Kaube H, Hoskin KL, Goadsby PJ (1992) Activation of the trigeminovascular system by mechanical distension of the superior sagittal sinus in the cat. Cephalalgia 12: 133–136PubMedCrossRefGoogle Scholar
  84. 84.
    Kaube H, Hoskin KL, Goadsby PJ (1993) Intravenous acetylsalicylic acid inhibits central trigeminal neurons in the dorsal horn of the upper cervical spinal cord in the cat. Headache 33: 541–544PubMedCrossRefGoogle Scholar
  85. 85.
    Goadsby PJ, Hoskin KL (1996) Inhibition of trigeminal neurons by intravenous admin-istration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain 67: 355–359PubMedCrossRefGoogle Scholar
  86. 86.
    Kaube H, Hoskin KL, Goadsby PJ (1993) Inhibition by sumatriptan of central trigeminal neurons only after blood-brain barrier disruption. Br J Pharmacol 109: 788–792PubMedCrossRefGoogle Scholar
  87. 87.
    Hoskin KL, Bulmer DC, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266: 173–176PubMedCrossRefGoogle Scholar
  88. 88.
    Clayton JS, Gaskin PJ, Beattie DT (1997) Attenuation of fos-like immunoreactivity in the trigeminal nucleus caudalis following trigeminovascular activation in the anaesthetised guinea-pig. Brain Res 775: 74–80PubMedCrossRefGoogle Scholar
  89. 89.
    Polley JS, Gaskin PJ, Perren MJ et al (1997) The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul Pept 68: 23–29PubMedCrossRefGoogle Scholar
  90. 90.
    Saxena PR, Den Boer MO (1991) Pharmacology of antimigraine drugs. J Neurol 238 (Suppl 1): S28–35PubMedCrossRefGoogle Scholar
  91. 91.
    Els T, Rother J, Beaulieu C et al (1997) Hyperglycemia delays terminal depolarization and enhances repolarization after peri-infarct spreading depression as measured by serial diffusion MR mapping. J Cereb Blood Flow Metab 17: 591–595PubMedCrossRefGoogle Scholar
  92. 92.
    Heyck H (1981) Vascular shunt mechanisms and migraine pathogenesis (letter). Neurology 31: 1203–1204PubMedCrossRefGoogle Scholar
  93. 93.
    Saxena PR, De Vries P, Heiligers JP et al (1998) BMS-181885, a 5-HT1B/1D receptor ligand, in experimental models predictive of antimigraine activity and coronary side-effect potential. Eur J Pharmacol 351: 329–339PubMedCrossRefGoogle Scholar
  94. 94.
    Jansen I, Tfelt-Hansen P, Edvinsson L (1991) Comparison of the calcium entry blockers nimodipine and flunarizine on human cerebral and temporal arteries: role in cerebro-vascular disorders. Eur J Clin Pharmacol 40: 7–15PubMedCrossRefGoogle Scholar
  95. 95.
    Edvinsson L, Jansen I, Cunha e Sa M, Gulbenkian S (1994) Demonstration of neuropeptide containing nerves and vasomotor responses to perivascular peptides in human cerebral arteries. Cephalalgia 14: 88–96PubMedCrossRefGoogle Scholar
  96. 96.
    Edvinsson L, Tfelt-Hansen P, Skarby T et al (1983) Presence of alpha-adrenoceptors in human temporal arteries. Comparison between migraine patients and controls. Cephalalgia 3: 219–224PubMedCrossRefGoogle Scholar
  97. 97.
    Edvinsson L, Mulder H, Goadsby PJ, Uddman R (1998) Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J Au ton Nery Syst 70: 15–22CrossRefGoogle Scholar
  98. 98.
    Goadsby PJ (1993) Inhibition of calcitonin gene-related peptide by h-CGRP(8–37) antagonizes the cerebral dilator response from nasociliary nerve stimulation in the cat. Neurosci Lett 151: 13–16PubMedCrossRefGoogle Scholar
  99. 99.
    Peitl B, Petho G, Porszasz R et al (1999) Capsaicin-insensitive sensory-efferent meningeal vasodilation evoked by electrical stimulation of trigeminal nerve fibers in the rat. Br J Pharmacol 127: 457–467PubMedCrossRefGoogle Scholar
  100. 100.
    Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114: 1397–1402PubMedCrossRefGoogle Scholar
  101. 101.
    McCulloch J, Uddman R, Kingman TA, Edvinsson L (1986) Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc Natl Acad Sci USA 83: 5731–5735PubMedCrossRefGoogle Scholar
  102. 102.
    Sakas DE, Moskowitz MA, Wei EP et al (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci USA 86: 1401–1405PubMedCrossRefGoogle Scholar
  103. 103.
    Macfarlane R, Tasdemiroglu E, Moskowitz MA et al (1991) Chronic trigeminal ganglionectomy or topical capsaicin application to pial vessels attenuates postocclusive cortical hyperemia but does not influence postischemic hypoperfusion. J Cereb Blood Flow Metab 11: 261–271PubMedCrossRefGoogle Scholar
  104. 104.
    Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16: 157–168PubMedCrossRefGoogle Scholar
  105. 105.
    Ledo AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7: 359–390Google Scholar
  106. 106.
    Bockhorst KH, Smith JM, Smith MI et al (2000) A quantitative analysis of cortical spreading depression events in the feline brain characterized with diffusion-weighted MRI. J Magn Reson Imaging 12: 722–733PubMedCrossRefGoogle Scholar
  107. 107.
    Lauritzen M (1987) Cerebral blood flow in migraine and cortical spreading depression. Acta Neurol Scand 113: 1–40CrossRefGoogle Scholar
  108. 108.
    Mies G, Iijima T, Hossmann KA (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4: 709–711PubMedCrossRefGoogle Scholar
  109. 109.
    Avoli M, Drapeau C, Louvel J et al (1991) Epileptiform activity induced by low extra-cellular magnesium in the human cortex maintained in vitro. Ann Neurol 30: 589–596PubMedCrossRefGoogle Scholar
  110. 110.
    Mayevsky A, Doron A, Manor T et al (1996) Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res 740: 268–274PubMedCrossRefGoogle Scholar
  111. 111.
    Cao Y, Welch KM, Aurora S, Vikingstad EM (1999) Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol 56: 548–554PubMedCrossRefGoogle Scholar
  112. 112.
    Hadjikhani N, Sanchez del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 98 (8): 4687–4692PubMedCrossRefGoogle Scholar
  113. 113.
    Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13: 1167–1177PubMedGoogle Scholar
  114. 114.
    Reuter U, Weber JR, Gold L et al (1998) Perivascular nerves contribute to cortical spreading depression-associated hyperemia in rats. Am J Physiol 274: H1979–H1987PubMedGoogle Scholar
  115. 115.
    Ebersberger A, Richter F, Averbeck B, Schaible H-G (2000) The trigeminal vascular system is not activated nor sensitized by cortical spreading depression. Soc Neurosci 26: 355–356Google Scholar
  116. 116.
    Ophoff RA, Terwindt GM, Vergouwe MN et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543–552PubMedCrossRefGoogle Scholar
  117. 117.
    Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87: 607–617PubMedCrossRefGoogle Scholar
  118. 118.
    Shimizu-Sasamata M, Lo HE, Noebels JL, Moskowitz MA (1997) P/Q-type calcium channel mutation reduces potassium evoked cortical neurotransmitter release. Soc Neurosci 27: 1182–1182Google Scholar
  119. 119.
    Ayata C, Shimizu-Sasamata M, Lo EH et al (2000) Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the alpha 1A subunit of P/Q type calcium channels. Neuroscience 95: 639–645PubMedCrossRefGoogle Scholar
  120. 120.
    Goadsby PJ, Duckworth JW (1987) Effect of stimulation of trigeminal ganglion on regional cerebral blood flow in cats. Am J Physiol 253: R270–R274PubMedGoogle Scholar
  121. 121.
    Uhl GR, Walther D, Nishimori T et al (1991) Jun B, c-jun, jun D and c-fos mRNAs in nucleus caudalis neurons: rapid selective enhancement by afferent stimulation. Brain Res Mol Brain Res 11: 133–141PubMedCrossRefGoogle Scholar
  122. 122.
    Matsubara T, Moskowitz MA, Huang Z (1992) UK-14,304, R(-)-alpha-methyl-histamine and SMS 201–995 block plasma protein leakage within dura mater by prejunctional mechanisms. Eur J Pharmacol 224: 145–150PubMedCrossRefGoogle Scholar
  123. 123.
    Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL et al (1998) Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci 18: 9564–9571PubMedGoogle Scholar
  124. 124.
    Skarby T, Tfelt-Hansen P, Gjerris F, et al (1982) Characterization of 5-hydroxytryptamine receptors in human temporal arteries: comparison between migraine sufferers and nonsufferers. Ann Neurol 12: 272–277PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2002

Authors and Affiliations

  • Uwe Reuter
    • 1
  • Guy Arnold
    • 1
  1. 1.Charité, Neurologische Klinik und PoliklinikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations