Skip to main content

Partitioning of Multiple Data, Sets Phylogenetic Analysis

  • Chapter

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

This chapter deals with the methodological aspects involved in phylogenetic analysis of multiple data sets within a maximum parsimony framework. Comparisons of character sets within a maximum likelihood paradigm are discussed elsewhere [1-6]. Below, we (1) review the three basic philosophies of data partitioning and combination in phylogenetic analysis (2) present some analytical methods available for examining the distribution of support and conflict among data sets in a combined analysis framework (3) use two empirical examples to illustrate different approaches to partitioned and combined phylogenetic analyses and (4) review the methodology required to perform some of these analyses using PAUP* [7] and ARNIE [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao Y, Adachi J, Janke A, Paabo S et al. (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene. J. Mol. Evol. 39: 519–527

    Article  PubMed  CAS  Google Scholar 

  2. Yang Z, Wang T (1995) Mixed model analysis of DNA sequence evolution. Biometrics 51: 551–561

    Article  Google Scholar 

  3. Huelsenbeck JP and Bull JJ (1996) A likelihood ratio test to detect conflicting phylogenetic signal. Syst. Biol. 45: 92–98

    Article  Google Scholar 

  4. Huelsenbeck JP and Rannala B (1997) Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276: 227–232

    Article  PubMed  CAS  Google Scholar 

  5. Yang Z (1997) PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS 13: 555–556

    PubMed  CAS  Google Scholar 

  6. Nishiyama T and Kato M (1999) Molecular phylogenetic analysis among Bryophytes and Tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Mol. Biol. Evol. 16: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  7. Swofford DL (1999) PAUP: Phylogenetic analysis using parsimony, v. 4. Smithsonian Institution, Washington DC

    Google Scholar 

  8. Siddall M (1995) ARNIE computer program. Random Cladistics Software Package

    Google Scholar 

  9. Miyamoto MM (1985) Consensus cladograms and general classifications Cladistics. 1: 186–189

    Article  Google Scholar 

  10. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7–25

    Article  Google Scholar 

  11. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL et al. (1993) Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384–397

    Google Scholar 

  12. Kluge AG and Wolf AJ (1993) What’s in a word? Cladistics 9: 183–199

    Article  Google Scholar 

  13. Miyamoto MM and Fitch WM (1995) Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44: 64–76

    Google Scholar 

  14. de Queiroz A, Donoghue MJ and Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Ann. Rev. Ecol. Syst. 26: 657–681

    Article  Google Scholar 

  15. Brower AVZ, DeSalle R and Vogler A (1996) Gene trees, species trees and systematics: A cladistic perspective. Ann. Rev. Ecol. Syst. 27: 423–450

    Article  Google Scholar 

  16. Huelsenbeck JP, Bull JJ and Cunningham CW (1996) Combining data in phylogenetic analysis. TREE 11: 152–158

    PubMed  CAS  Google Scholar 

  17. Nixon K and Carpenter J (1996a). On simultaneous analysis. Cladistics 12: 221–241

    Article  Google Scholar 

  18. Siddall M (1997) Prior agreement: Arbitration or arbitrary? Syst. Biol. 46: 765–769

    Article  PubMed  CAS  Google Scholar 

  19. Wiens JJ (1998) Combining data sets with different phylogenetic histories. Syst. Biol. 47: 568–581

    Article  PubMed  CAS  Google Scholar 

  20. Allard MW, Carpenter JM (1996) On weighting and congruence. Cladistics 12: 183–198

    Article  Google Scholar 

  21. Milinkovitch MC, LeDuc RG, Adachi J et al. (1996) Effects of character weighting and species sampling on phylogeny reconstruction: A case study based on DNA sequence data in Cetaceans. Genetics 144: 1817–1833

    PubMed  CAS  Google Scholar 

  22. Baker R and DeSalle R (1997) Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst. Biol. 46: 654–673

    Article  PubMed  CAS  Google Scholar 

  23. Hastad 0 and Bjorklund M (1998) Nucleotide substitution models and estima-tion of phylogeny. Mol. Biol. Evol. 15: 1381–1389

    Article  PubMed  CAS  Google Scholar 

  24. Bjorklund M (1999) Are third positions really that bad? A test using vertebrate cytochrome b. Cladistics 15: 191–197

    Google Scholar 

  25. Kallersjo M, Albert V and Farris J (1999) Homoplasy increases phylogenetic structure. Cladistics 15: 91–93

    Google Scholar 

  26. Nelson G (1979) Cladistic analysis and synthesis: Principles and definitions, with a historical note on Adanson’s Families des Plantes (1763–1764). Syst. Zool. 28: 1–21

    Article  Google Scholar 

  27. Swofford DL (1991) When are phylogeny estimates from molecular and morphological data incongruent? In: MM Miyamoto and J Cracraft (eds.): Phylogenetic Analysis of DNA Sequences. Oxford Univ. Press, New York, 295–333

    Google Scholar 

  28. Nixon K and Carpenter J (1996b). On consensus, collapsibility and clade concordance. Cladistics 12: 305–321

    Article  Google Scholar 

  29. Farris JS (1983) The logical basis of phylogenetic analysis. In: NI Platnick and VA Funk (eds.): Advances in Cladistics Vol. 2. Proceedings of the Second Meeting of the Willi Hennig Society. Colombia Univ. Press, New York, 7–36

    Google Scholar 

  30. Hillis DM (1987) Molecular versus morphological approaches to systematics. Anna. Rev. Ecol. Syst. 18: 23–42

    Article  Google Scholar 

  31. Barrett M, Donoghue MJ and Sober E (1991) Against consensus. Syst. Zool. 40: 486–493

    Article  Google Scholar 

  32. de Queiroz A (1993) For consensus (sometimes). Syst. Biol. 42: 368–372

    Google Scholar 

  33. Chippindale PT and JJ Wiens (1994) Weighting, partitioning and combining characters in phylogenetic analyses. Syst. Biol. 43: 278–287

    Google Scholar 

  34. Olmstead RG and JA Sweere (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solenaceae. Syst. Biol. 43: 467–481

    Article  Google Scholar 

  35. Cunningham CW (1997) Is incongruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst. Biol. 43: 464–478

    Article  Google Scholar 

  36. Gatesy JE, O’Grady PM and Baker RH (1999) Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics 15: 271–313

    Article  Google Scholar 

  37. Reed RD and Sperling FAH (1999) Interaction of process partitions in phylogenetic analysis: An example from the swallowtail butterfly genus Papilio. Mol. Biol. Evol. 16: 286–297

    Article  CAS  Google Scholar 

  38. Rodrigo AG, Kelly-Borges M, Bergquist PR and Bergquist PL (1993) A randomisation test of the null hypothesis that two cladograms are sample estimated is a parametric phylogenetic tree. N.Z. J. Bot. 31: 257–268

    Article  Google Scholar 

  39. Miyamoto MM (1996) A congruence study of molecular and morphological data for eutherian mammals. Mol. Phylogenet. Evol. 6: 373–390

    Article  PubMed  CAS  Google Scholar 

  40. Clark JB, Maddison WP and Kidwell MG (1994) Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol. Biol. Evol. 11: 40–50

    PubMed  CAS  Google Scholar 

  41. Nei M (1987) Molecular Evolutionary Genetics. Columbia Univ. Press, New York

    Google Scholar 

  42. Pamilo P and Nei M (1988) Relationships between gene trees and species trees . Mol. Biol. Evol. 5: 568–583

    PubMed  CAS  Google Scholar 

  43. Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surv. Evol. Biol. 7: 1–44

    Google Scholar 

  44. Rozas J and Aguade M (1994) Gene conversion is involved in the transfer of genetic information between naturally occurring inversions of Drosophila. Proc. Natl. Acad. Sci. USA 91: 11517–11521

    Article  PubMed  CAS  Google Scholar 

  45. Stewart C, Schilling J and Wilson. AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 300: 401–404

    Article  Google Scholar 

  46. Gauthier J, Kluge AG and Rowe T (1988) Amniote phylogeny and the importance of fossils. Cladistics 4: 105–209

    Article  Google Scholar 

  47. Collins T, Wimberger P and Naylor G (1994) Compositional bias, character-state bias and character-state reconstruction using parsimony. Syst. Biol. 43: 482–496

    Article  Google Scholar 

  48. Goodman M, Czelusniak J, Moore G, Romero A et al. (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28: 132–163

    Article  CAS  Google Scholar 

  49. McDade L (1990) Hybrids and phylogenetic systematics. I Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44: 1685–1700

    Article  Google Scholar 

  50. Templeton A (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37: 221–244

    Article  CAS  Google Scholar 

  51. Farris JS, Kallersjo M, Kluge AG and Bult C (1994) Testing significance of congruence. Cladistics 10: 315–320

    Article  Google Scholar 

  52. Cunningham CW (1997a). Can three incongruence tests predict when data should be combined? Mol. Biol. Evol. 14: 733–740

    Article  CAS  Google Scholar 

  53. Mickevich M and Farris J (1981) The implications of congruence in Menidia. Syst. Zool. 30: 351–370

    Article  Google Scholar 

  54. Farris JS, Kallersjo M, Kluge AG and Bult C (1995) Constructing a significance test for incongruence. Syst. Biol. 44: 570–572

    Google Scholar 

  55. Kishino H and Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data and the branching order in the Hominoidea. J. Mol. Evol. 29: 170–179

    Article  PubMed  CAS  Google Scholar 

  56. Larson A (1994) The comparison of morphological and molecular data in phylogenetic systematics. In: B Schierwater, B Street, GP Wagner and R DeSalle (eds): Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser Verlag, Berlin, 371–390

    Google Scholar 

  57. Lutzoni F and Vilgalys R (1995) Integration of morphological and molecular data sets in estimating fungal phylogenies. Can. J. Bot. 73: 649–659

    Article  Google Scholar 

  58. Lutzoni F (1997) Phylogeny of lichen-and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst. Biol. 46: 373–406

    Article  PubMed  CAS  Google Scholar 

  59. Rodrigo AG (1998) Combinability of phylogenies and bootstrap confidence envelopes. Syst. Biol. 47: 727–733

    Article  PubMed  CAS  Google Scholar 

  60. Lutzoni F and Barker FK (1999) Sampling confidence envelopes of phylogenetic trees for combinability testing: A reply to Rodrigo. Syst. Biol. 48: 596–603

    Article  PubMed  CAS  Google Scholar 

  61. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803

    Article  CAS  Google Scholar 

  62. Wheeler W, Cartwright P and Hayashi C 1993. Arthropod phylogeny: A combined approach. Cladistics 9: 1–39

    Article  Google Scholar 

  63. Naylor GJP and Brown WM (1998) Amphioxus mitochondrial DNA, chordate phylogeny and the limits of inference based on comparisons of sequences. Syst. Biol. 47: 61–76

    Article  PubMed  CAS  Google Scholar 

  64. Farris J and Kluge A (1985) Parsimony, synapomorphy and explanatory power: A reply to Duncan. Taxon 34: 130–135

    Article  Google Scholar 

  65. Kluge AG (1997) Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13: 81–96

    Article  Google Scholar 

  66. Sullivan S (1996) Combining data with different distributions of among-site rate variation. Syst. Biol. 45: 375–380

    Google Scholar 

  67. Wiens JJ (1999) Polymorphism in systematics and comparative biology. Annu. Rev. Ecol. Syst. 30: 327–362

    Article  Google Scholar 

  68. Poe S (1996) Data set incongruence and the phylogeny of crocodilians. Syst. Biol. 45: 393–414

    Article  Google Scholar 

  69. Goloboff P (1993) Estimating character weights during tree search. Cladistics 9: 83–91

    Article  Google Scholar 

  70. Farris JS (1988) “Hennig86.” Port Jefferson Station, New York

    Google Scholar 

  71. Maddison DR, Swofford DL and Maddison WP (1997) NEXUS: An extensible file format for systematic information. Syst. Biol. 46: 590–621.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

O’Grady, P.M., Remsen, J., Gatesy, J.E. (2002). Partitioning of Multiple Data, Sets Phylogenetic Analysis. In: DeSalle, R., Giribet, G., Wheeler, W. (eds) Techniques in Molecular Systematics and Evolution. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8125-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8125-8_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6257-7

  • Online ISBN: 978-3-0348-8125-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics