Skip to main content

Abstract

While it is possible to perform molecular systematic studies without the Poly-merase Chain reaction (PCR; [1]), there is no doubt that PCR is responsible for the tremendous explosion of the field, both in terms of the number of sequences generated and the number of taxa which have been sampled. This technique, which at its most basic can be accomplished with three water baths, a pair of hands and the necessary reagents, has made it possible to quickly and easily search entire genomes for particular sequences. Researchers using PCR have extracted genetic information from ancient samples (reviewed in [2]; see also “Enjoy 577 Ancient DNA references (or even more)” http://www.comic.sbg.ac.at/staff/jan/ancient/references.htm) and as minimal a starting material as a single cell [3]. Its effect has been felt in all fields of biology ranging from medicine and forensic science to ecology and evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mullis K, Faloona F, Scharf S, Saiki Retal. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology 51: 263–273

    Article  PubMed  CAS  Google Scholar 

  2. DeSalle R, Bonwich E (1996) DNA isolation, manipulation and characterization form old tissues.Genetic Engineering 18: 13–32

    PubMed  CAS  Google Scholar 

  3. Zhang L, Cui X, Schmitt K, Hubert R et al. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA 89: 5847–5851

    Article  PubMed  CAS  Google Scholar 

  4. Saiki RK, Gelfand DH, Stoeffel S, Scharf S et al. (1988) Primer directed amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  5. Innis MA, Gelfand DH, Sninsky JJ (eds.) (1990) PCR Prtocols:A Guide to Meth-ods and Applications. Academic Press, San Diego

    Google Scholar 

  6. Sonnenfeld M, Ward, Nystrom, Mosher G, Stahl J et al. (1997) The Drosophila tango gene encodes a bHLH-PAS protein that is orthologous to mammalian Arnt and contols CNS midline and tracheal development. Development 124: 4571–4582

    Google Scholar 

  7. Helmsley A, Arnheim N, Toney MD, Cortopassi G et al. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acid Res. 17: 6545–51

    Article  Google Scholar 

  8. Nasidze I, M. Stoneking. 1999. Short Technical Reports: Construction of larger-size sequencing templates from degraded DNA. Biotechniques 27 (September): 480–88

    PubMed  CAS  Google Scholar 

  9. Amato G, Gatesy J (1994) PCR assays of variable nucleotide sites for identification of conservation units. In: B Schierwater, B Streit, GP Wagner and R DeSalle (eds) Molecular Ecology and Evolution: Approaches and Applications Birkhauser Verlag, Basel/Switzerland

    Google Scholar 

  10. Selvakumar N, Ding B, Wilson SM (1997) Improved resolution of asymmetric-PCR SSCP Products. Biotechniques 22: 606–608

    Google Scholar 

  11. Sellner LN, Turbett GR (1998) Comparison of three RT-PCR methods. Biotechniques 25 (August): 230–234

    PubMed  CAS  Google Scholar 

  12. Chadwick N, Wakefield J, Pounder RE, Bruce IJ (1998) Comparison of Three RNA Amplification Methods as Sources of DNA for Sequencing. Biotechniques 25 (November): 818–822

    PubMed  CAS  Google Scholar 

  13. Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl. Acad. Sci. USA 91: 2216–2220

    Article  PubMed  CAS  Google Scholar 

  14. Cheng S, Fockler C, Barnes WM and Higuchi R (1997) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91: 5695–5699

    Article  Google Scholar 

  15. Min G, Powell JR (1998) Long-Distance Genome Walking Using the Long and Accurate Polymerase Chain Reaction. Biotechniques 24 (March): 398–400

    PubMed  CAS  Google Scholar 

  16. Sanchez-Cespedes M, Cairns P, Jen J, Sidransky D (1998) Degenerate Oligonucleotide-Primed PCR (DOP-PCR): evaluation of its reliability for screening of genetic alterations in neoplasia. Biotechniques 25 (December): 1036–1038

    PubMed  CAS  Google Scholar 

  17. Suazo A, Hall HG (1999) Modification of the AFLP Protocol Applied to Honey Bee (Apis mellifera L.) DNA. Biotechniques 26 (April): 704–709

    PubMed  CAS  Google Scholar 

  18. Vos P, Hogers R, Bleeker M, Reijans M et al. (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 21: 4407–4414

    Article  Google Scholar 

  19. Reineke A, Karlovsky P (2000) Simplified AFLP Protocol: Replacement of primer labeling by the incorporation of a-labeled nucleotides during PCR. Biotechniques 28 (April): 622–623

    PubMed  CAS  Google Scholar 

  20. Schupp JM, Price LB, Klevytska A, Keim P (1999) Internal and flanking sequence from AFLP Fragments Using Ligation - Mediated Suppression PCR. Biotechniques 26 (May): 905–912

    PubMed  CAS  Google Scholar 

  21. Lin J-J, Ma J, Kuo J (1999) Chemiluminescent detection of AFLP markers. Biotechniques 26 (February): 344–348

    PubMed  CAS  Google Scholar 

  22. Atienzar F, Evenden A, Jha A, Sawa D et al. (2000) Optimized RAPD analysis generates high - quality genomic DNA profiles at high annealing temperature. Biotechniques 28 (January): 52–54

    PubMed  CAS  Google Scholar 

  23. Ellinghaus P, Badehorn D, Blümer R, Becker K et al. (1999) Increased efficiency of arbitrarily primed PCR by prolonged ramp times. Biotechniques 26 (April): 626–630

    PubMed  CAS  Google Scholar 

  24. Corley-Smith GE, Lim CJ, Kalmar GB, Brandhorst B (1997) Efficient Detection of DNA Polymorphisms by Fluorescent RAPD Analysis. Biotechniques 22 (April): 690–699

    PubMed  CAS  Google Scholar 

  25. Pan Y-B, Burner DM, Ehrlich KC, Grisham MP et al. (1997) Analysis of primer - derived, nonspecific Amplification products in RAPD - PCR. Biotechniques 22 (June): 1071–1077

    PubMed  CAS  Google Scholar 

  26. Gallego FJ and Martinez I (1997) Method to improve reliability of random - amplified polymorphic DNA markers. Biotechniques 23 (October): 663–664

    PubMed  CAS  Google Scholar 

  27. Ramser J, Weising K, Chikaleke V, Kahl G (1997) Increased informativeness of RAPD analysis by detection of microsatellite Motifs. Biotechniques 23 (August): 285–290

    PubMed  CAS  Google Scholar 

  28. Leamon JH, Moiseff A, Crivello JF (2000) Development of a high - throughput process for detection and screening of genetic polymorphisms. Biotechniques 28 (May): 994–1005

    PubMed  CAS  Google Scholar 

  29. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 25: 6531–6535

    Article  Google Scholar 

  30. Rieseberg LH (1996) Homology among RAPD fragments in interspecific comparisons. Mol. Ecol. 5: 99–105

    Article  CAS  Google Scholar 

  31. Varadaraj K, Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G+C rich DNA using genetically engineered DNA polymerases. Gene 140: 1–5

    Article  PubMed  CAS  Google Scholar 

  32. Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32: 137–144

    Article  PubMed  CAS  Google Scholar 

  33. Melchior WB and von Hippel PH (1973) Alteration of the relative stability ofdA•dT and dG•dC base pairs in DNA. Proc. Nat. Acad. Sci. USA. 70: 298–302

    Article  PubMed  CAS  Google Scholar 

  34. Henke W, Herdel K, Jung K, Schnorr D et al. (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Research. 25: 3957–3958

    Article  PubMed  CAS  Google Scholar 

  35. Baskaran N, Kandpal RP, Bhargava AK, Glynn MW et al. (1996) Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Research 6: 633–638

    Article  PubMed  CAS  Google Scholar 

  36. Chevet E, Lemaitre G, Katinka D (1995) Low concentrations of tetramethylammoniumchloride increase yield and specificity of PCR. Nucleic Acids Research 23: 3343–3344

    Article  PubMed  CAS  Google Scholar 

  37. McConlogue L, Brow MA, Innis MA (1988) Structure independent DNA amplification of PCR using 7-deaza-2’-deoxyguanosine. Nucleic Acids Research 16: 9869

    Article  PubMed  CAS  Google Scholar 

  38. Sarkar G, Kapelner S, Sommer SS (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Research 18: 7465

    Article  PubMed  CAS  Google Scholar 

  39. Stommel JR, Panta GR, Levi A, Rowland LJ (1997) Effects of gelatin and BSA on the amplification reaction for generating RAPD. Biotechniques 22: 1064–1066

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Bonacum, J., Stark, J., Bonwich, E. (2002). PCR Methods and Approaches. In: DeSalle, R., Giribet, G., Wheeler, W. (eds) Techniques in Molecular Systematics and Evolution. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8125-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8125-8_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6257-7

  • Online ISBN: 978-3-0348-8125-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics