Skip to main content

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Systematics has a unique place among natural sciences because it is the most evolutionary of all sciences. It is strictly historical rather than experimental. Of course, many of the restrictions on systematics are found elsewhere. For example, neither systematists nor astronomers can perform manipulative experiments to see if what they observe will happen again in the evolution of life or stars. Sciences that focus on history have special problems and appropriate epistemologies (rules about how we establish the validity of what we know, see [1]). Systematics is unique in requiring that every practicing authority know all the work that ever came before,both good and bad. In physics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Hara RJ (1988) Homage to Clio, or, toward an historical philosophy for evolutionary biology. Systematic Zoology 37: 142–155

    Article  Google Scholar 

  2. Wenzel JW (1992) Behavioral homology and phylogeny. Annual Review of Ecology and Systematics 23: 361–381

    Article  Google Scholar 

  3. Wenzel JW (1993) Application of the biogenetic law to behavioral ontogeny: a test using nest architecture in paper wasps. Journal of Evolutionary Biology 6: 229–247

    Article  Google Scholar 

  4. de Quieroz A and Wimberger PH (1993). The usefulness of behaviour for phylogeny estimation: Levels of homoplasy in behavioral and morphological characters. Evolution 47: 46–60

    Article  Google Scholar 

  5. Coddington JA (1990) Cladistics and spider classification: araneomorph phylogeny and the monophyly of orb-weavers. Acta Zoologica Fennica 190: 75–87

    Google Scholar 

  6. Proctor HC (1991) The evolution of copulation in water mites: a comparative test for nonreversing characters. Evolution 45: 558–567

    Article  Google Scholar 

  7. Tinbergen N (1953) Social behaviour in animals with special reference to vertebrates. Methuen, London

    Google Scholar 

  8. Ross HH (1964) Evolution of caddisworm cases and nets. American Zoologist 4: 209–220

    Google Scholar 

  9. Gaffney ES (1979) An introduction to the logic of phylogeny reconstruction. In: J Cracraft, N Eldredge (eds) Phylogenetic Analysis and Paleontology. Columbia University Press, New York, 79–111

    Google Scholar 

  10. Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetic systematics. John Wiley and Sons, Toronto

    Google Scholar 

  11. Farris JS (1983) The logical basis of phylogenetic analysis. In: NI Platnick, VA Funk (eds) Advances in Cladistics vol. 2. Columbia University Press, New York, 7–36

    Google Scholar 

  12. Brooks DR, McLennan DA (1991) Phylogen y Ecology and Behavior. University of Chicago Press, Chicago

    Google Scholar 

  13. Schuh R T (2000) Biological Systematics: Principles and Applications. Cornell University Press, Ithaca, New York 236

    Google Scholar 

  14. Patterson C (1982) Morphological characters and homology. In: KA Joysey, AE Friday (eds) Problems of Phylogenetic Reconstruction. Academic Press, London and New York, 21–74

    Google Scholar 

  15. de Pinna MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7: 367–394

    Article  Google Scholar 

  16. Nelson G (1994) Homology and systematics. In: BK Hall (ed) Homology: The Hierarchical Basis of Comparative Biology. Academic Press, New York, 101–149

    Google Scholar 

  17. Miller JS, Wenzel JW (1995) Ecological characters and phylogeny. Annual Review of Entomology 40: 389–415

    Article  CAS  Google Scholar 

  18. Brower AVZ, Schawaroch V (1996) Three steps of homology assessment. Cladistics 12: 265–272

    Google Scholar 

  19. Phillips A, Janies D, Wheeler W (2000) Multiple Sequence alignement in Phylogenetic analysis. Molecular phylogenetics and Evolution 16: 317–330

    Article  PubMed  CAS  Google Scholar 

  20. Cameron S A (1991) A new tribal phylogeny of the Apidae inferred from mitochondrial DNA sequences. In: DR Smith (ed) Diversity in the genus Apis. West-view Press, Boulder, Colorado

    Google Scholar 

  21. Chavarria G, Carpenter JM (1994) “Total evidence” and the evolution of highly social bees. Cladistics 10: 229–258

    Google Scholar 

  22. Simmons MP (2000) A fundamental problem with amino-acid-sequence characters for phylogenetic analysis. Cladistics 16; in press

    Google Scholar 

  23. Hillis DM (1994) Homology in molecular biology. In: BK Hall (ed) Homology: The Hierarchical Basis of Comparative Biology. Academic Press, New York, 339–369

    Google Scholar 

  24. Nixon KC, Carpenter JM (1993) On out-groups. Cladistics 9: 413–426

    Article  Google Scholar 

  25. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 410–410

    Google Scholar 

  26. Wheeler WC (1990) Nucleic acid sequence phylogeny and random out-groups. Cladistics 6: 363–367

    Article  Google Scholar 

  27. Kluge AG (1997) Testability and the refutation and corroboration for cladistic hypotheses. Cladistics 13: 81–96

    Article  Google Scholar 

  28. Wheeler WC, Honeycutt RL (1988) Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implication. Molecular Biology and Evolution 5: 90–96

    PubMed  CAS  Google Scholar 

  29. Sidow A and Wilson AC (1990) Compositional statistics-an improvement of the evolutionary parsimony and its application to deep branches in the tree of life. Journal of Molecular Evolution 31: 51–68

    Article  Google Scholar 

  30. Hassanin A, LeCointre G, Tillier S (1998) The “evolutionary signal” of homoplasy in protein coding gene sequences and its consequences for a priori weighting in phylogeny. Comptes Rendus de l’Academie des Sciences 321: 611–620

    Article  PubMed  CAS  Google Scholar 

  31. Källersjö M, Albert VA, Farris JS (1999) Homoplasy increases phylogenetic signal. Cladistics 15: 91–94

    Google Scholar 

  32. Björklund M (1999) Are third positions really that bad? A test using vertebrate cytochrome b. Cladistics 15: 191–197

    Google Scholar 

  33. Carpenter JM (1988) Choosing among equally parsimonious cladograms. Cladistics 4: 291–296

    Article  Google Scholar 

  34. Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: DM Hillis, C Moritz (eds) Molecular Systematics. Sinauer, Sunderland, Massachusetts, 411–501

    Google Scholar 

  35. Goloboff PA (1993) Estimating character weights during tree search. Cladistics 9: 83–91

    Article  Google Scholar 

  36. Farris JS (1979) The information content of the phylogenetic system. Systematic Zoology 28: 483–519

    Article  Google Scholar 

  37. Wenzel JW (1997) When is a phylogenetic test good enough? Mémoires du Muséum National d’Histoire Naturelle 173: 31–45

    Google Scholar 

  38. Kluge AG, Wolf AJ (1993) What’s in a word? Cladistics 9: 183–199

    Article  Google Scholar 

  39. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL et al. (1993) Partitioning and combining data in phylogenetic analysis. Systematic Biology 42: 384–397

    Google Scholar 

  40. Wenzel JW, Siddall ME (1999) Noise. Cladistics 15: 51–64

    Article  Google Scholar 

  41. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) In: DM Hillis, C Moritz, BK Mable (eds) Molecular Systematics. Sinauer, Sunderland, Massachusetts: 407–514

    Google Scholar 

  42. Adams EN (1972) Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 21: 390–397

    Article  Google Scholar 

  43. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Systematic Zoology 18: 1–32

    Article  Google Scholar 

  44. Farris JS (1989) The retention index and resealed consistency index. Cladistics 5: 417–419

    Article  Google Scholar 

  45. Goloboff PA (1991) Random data, homoplasy and information. Cladistics 7: 395–406

    Article  Google Scholar 

  46. Sanderson MJ, Donoghue MJ (1989) Patterns of variation in levels of homoplasy. Evolution 43: 1781–1795

    Article  Google Scholar 

  47. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  48. Farris JS, Albert VA, Källersjö M, Lipscomb D et al. (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99–124

    Article  Google Scholar 

  49. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803

    Article  CAS  Google Scholar 

  50. Bremer K (1994) Branch support and tree stability. Cladistics 10: 295–304

    Article  Google Scholar 

  51. Davis JI (1995) A phylogenetic structure for the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Systematic Botany 20: 503–527

    Article  Google Scholar 

  52. Platnick NI (1979) Philosophy and the transformation of cladistics. Systematic Zoology 28: 537–546

    Article  Google Scholar 

  53. Brady RH (1985) On the independence of systematics. Cladistics 1: 113–126

    Article  Google Scholar 

  54. Frost DR, Kluge AG (1994) A consideration of epistemology in systematic biology, with special reference to species. Cladistics 10: 259–294

    Article  Google Scholar 

  55. Kluge AG (1999) The science of phylogenetic systematics: Explanation, prediction, and test. Cladistics 15: 429–436

    Article  Google Scholar 

  56. Popper KR (1992) Conjectures and Refutations Routledge, New York

    Google Scholar 

  57. Armbruster WS (1996) Exaptation, adaptation, and homoplasy: evolution of ecological traits in Dalechampia vines. In: MJ Sanderson, L Hufford (eds) Homoplasy: The Recurrence of Similarity in Evolution. Academic Press, San Diego, 227–243

    Google Scholar 

  58. Platnick NI (1982) Defining characters and evolutionary groups. Systematic Zoology 31: 282–284

    Article  Google Scholar 

  59. Wenzel JW, Carpenter JM (1994) Comparing methods: adaptive traits and tests of adaptation. In: P Eggleton and R Vane-Wright (eds) Phylogenetics and Ecology. The Linnean Society of London, London, 79–101

    Google Scholar 

  60. Tuffley C, Steel M (1997) Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology 59: 581–607

    Article  PubMed  CAS  Google Scholar 

  61. Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution 17: 839–850

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Wenzel, J.W. (2002). Phylogenetic Analysis: The Basic Method. In: DeSalle, R., Giribet, G., Wheeler, W. (eds) Techniques in Molecular Systematics and Evolution. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8125-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8125-8_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6257-7

  • Online ISBN: 978-3-0348-8125-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics