Skip to main content

Diffusion Screening, Acinus Size and Optimal Design of Mammalian Lungs

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

The purpose of this paper is first to show that for efficient diffusive transfer of oxygen to blood, the unit transfer system, namely the lung acinus, should be a space-filling surface with a fractal dimension equal to 3. Second, this unit transfer cell should not be too large. More precisely, the perimeter of a planar cut of the acinus should not be too large as compared with the ratio of the diffusivity of oxygen in air to alveolar membrane permeability. Maximal efficiency then imposes that the lung has to be divided into a large number of small diffusion cells. In exercise conditions the screening effects are decreased as the diffusion source enters more deeply into the structure. This is justified by the study of an “acinus Peclet number” which properly describes the transition zone from ventilation to diffusion inside the acinus. In that situation the oxygen flux is governed by the total acinar surface and the membrane thickness together with physiological limitations. It is shown here that the geometrical membrane diffusion capacityaloneobeys a scaling allometric power law with an exponent 0.9 similar to the exponent found for oxygen consumption at peak aerobic demand. This study shows that the design of the acini of animals of different sizes is such that, under physiological conditions prevailing in exercise, screening is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weibel E.R. The Pathway for Oxygen,Harvard University Press, Cambridge (1984).

    Google Scholar 

  2. Weibel E.R., Morphometry of the Human Lung, Springer-Verlag (1963).

    Book  Google Scholar 

  3. Weibel E.R. in Respiratory Physiology, an Analytical Approach (Chang H. K. and Paiva M. eds) pp.1–56, M. Dekker, Inc., (1989).

    Google Scholar 

  4. Rodriguez M., Bur S., Favre A., and Weibel E. R. Pulmonary acinus: geometry and morphometry of the peripheral airway system in rat and rabbit. Am. J. Anat: 180:143–155 (1987).

    Article  Google Scholar 

  5. Haefeli-Bleuer B. and Weibel E. R. Morphometry of the human pulmonary acinus. Anat. Rec. 220: 401–414 (1988).

    Article  Google Scholar 

  6. Sapoval B. Fractals, Aditech, Paris, (1990) and Universalités et Fractales Flammarion, Paris, (1997).

    Google Scholar 

  7. Sapoval B. Transfer to and across irregular membranes modelled by fractal geometry. In Fractals in biology and medicine (Nonnenmacher T.F., Losa G.A., and Weibel E.R., eds) pp. 241–249, Birkhäuser-Verlag, Basel (1994).

    Chapter  Google Scholar 

  8. Sapoval B. Transport across Irregular Interfaces: Fractal electrodes, membranes and catalysts, in Fractals and Disordered Systems 2nd (Bunde A. and Havlin S. eds) pp. 232–261, Springer-Verlag, (1996). A popularization version can be found, in french, in Pour la Science 198: 232–261 (1994).

    Google Scholar 

  9. Rosso M., Huttel Y., Chassaing E., Sapoval B., and Gutfraind R., Visualization of the active zone of an irregular electrode by optical absorption J. Electrochem. Soc. 144: 1713–1717 (1997).

    Article  Google Scholar 

  10. Mandelbrot B. The Fractal Geometry of Nature, W.H.Freeman and Co, San Francisco,(1982).

    MATH  Google Scholar 

  11. Weibel E. R., Federspiel W. J., Fryder-Doffey F., Hsia C. C. W., König M., Stalder-Navarro V., and Vock R. Morphometric model for pulmonary diffusing capacity. I. Membrane diffusing capacity. Respir. Physiol. 93:125–149 (1993).

    Article  Google Scholar 

  12. Sapoval B., Filoche M., Karamanos K., and Brizzi R. Can One Hear the Shape of an Electrode? The Active Zone in Laplacian Transfer, I. Numerics. Eur. Phys. J. B 9: 739–753 (1999).

    Article  Google Scholar 

  13. Verbanck S., Weibel E. R., and Paiva M. Simulations of washout experiments in postmortem rat lungs. J. Appl. Physiol. 75 (1):441–451 (1993).

    Google Scholar 

  14. Gehr P., Bachofen M., and Weibel E. R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32: 121–140 (1978).

    Article  Google Scholar 

  15. Seeherman H. J., Taylor C. R., Maloy G. M. O., and Armstrong R. B. Design of the mammalian respiratory system. III. Measuring maximum aerobic capacity. Respir. Physiol. 44: 11–24 (1981).

    Article  Google Scholar 

  16. Taylor C. R., Karas R. H., Weibel E. R., and Hoppeler H. Adaptive variation in the mammalian respiratory system in relation to energetic demand. II. Reaching the limits to oxygen flow. Respir. Physiol. 69:7–26 (1987).

    Article  Google Scholar 

  17. Weibel E.R., Marques L.B., Constantinopol M., Doffey F., Gehr P., and Taylor C.R. Adaptive variation in the mammalian respiratory system in relation to energetic demand. VI. The pulmonary gas exchanger. Respir. Physiol. 69: 81– 100 (1987).

    Article  Google Scholar 

  18. Constantinopol M., Jones J. H., Weibel E. R., Taylor C. R., Lindholm A., Karas R. H. Oxygen transport during exercise in large mammals. II. Oxygen uptake by the pulmonary gas exchanger. J Appl. Physiol. 67: 871–878 (1989).

    Google Scholar 

  19. Hoppeler H., Altpeter E., Wagner M., Turner D.L., Hokanson J., König M., Stalder-Navarro V.P. and Weibel E.R. Cold acclimation and endurance training in guinea pigs: Changes in lung, muscle and brown fat tissue. Resp. Physiol. 101: 189–198, (1995).

    Google Scholar 

  20. Hoppeler H., Lindstedt S.L., Uhlmann E., Niesel A., Cruz-Orive L.M., and Weibel E. R. Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the European woodmouse (Apodemus sylvaticus). J. Comp. Physiol. B 155: 51–61, (1984).

    Article  Google Scholar 

  21. Weibel E.R. Symmorphosis, Harvard University Press, Cambridge (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Sapoval, B., Weibel, E.R., Filoche, M. (2002). Diffusion Screening, Acinus Size and Optimal Design of Mammalian Lungs. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics