Skip to main content

Metabolic Hypercycles, Universality and Fractals in Biological Evolution

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

Self-organised critical system might be produced by an auto-regulatory feedback loop between opposite autocatalitic activities of catabolic and anabolic types. This mechanism, named metabolic hypercycle, is described by the Lotka-Volterra prey-predator equation and gives rise to fractal spatiotemporal patterns and rhythms. According to the Zipf’s principle of the least effort, the dynamic stability of the critical states of complex systems is produced by the minimisation of distributions and flows of opposite and correlated processes. Maps and clocks based on metabolic hypercycles might be used by living organisms to maintain their homeodynamic equilibrium and biodiversity at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gleick J. Chaos, making a new science. Penguin, New York (1987).

    MATH  Google Scholar 

  2. Stauffer D., and Stanley H.E. From Newton to Mandelbrot. Springer, New York (1992).

    Google Scholar 

  3. Bak P. How nature works: the science of self-organized criticality. Springer, New York (1996).

    Book  MATH  Google Scholar 

  4. Bak P., Tang C., and Wiesenfield K. Self-organized criticality. Physics Review 38: 364–374 (1988).

    Article  MATH  Google Scholar 

  5. Binney J.J., Dowrick N.J., Fisher A.J., and Newman M.E.J. The theory of critical phenomena: an introduction to the renormalization group. Oxford Science Publications (1993).

    Google Scholar 

  6. Mandlebrot B.B. The Fractal Geometry of Nature. W.H. Freeman and Co., San Francisco (1983).

    Google Scholar 

  7. Whittaker R.J. 1999. Scaling, energetics and diversity. Nature 401: 865–866 (1999).

    Article  Google Scholar 

  8. Brown J.H., and West G.B. Scaling in Biology. Oxford University Press, New York (2000).

    MATH  Google Scholar 

  9. Damiani G. Evolutionary meaning, functions and morphogenesis of branching structures in biology. In: Fractals in biology and medicine (Nonnenmacher T.F., Losa G.A., and Weibel E.R., eds) pp.104–115, Birkhauser-Verlag, Basel (1994).

    Chapter  Google Scholar 

  10. McMahon T.A., and Bonner J.T. On size and life. Freeman, New York (1983).

    Google Scholar 

  11. West G.B., Brown J.H., and Enquist B.J. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126 (1997).

    Article  Google Scholar 

  12. Enquist B.J., Brown J.H., and West G.B. Allometric scaling of plant energetics and population density. Nature 395:163–165 (1998).

    Article  Google Scholar 

  13. West G.B., Brown J.H., and Enquist B.J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284: 167–169 (1999).

    Article  MathSciNet  Google Scholar 

  14. Damiani G Il gioco della vita, la teoria binaria dell’Universo fisico. Editrice Italiana Audiovisivi, Roma (1984).

    Google Scholar 

  15. Damiani G., and Della Franca P. Morphé and Evolution. Biology Forum 90: 227–266 (1997).

    Google Scholar 

  16. Damiani G Evolution of life in a fractal Universe. In: Fractals in biology and medicine Vol. 2 (Losa G.A., Merlini D., Nonnenmacher T.F., and Weibel E.R., eds) pp.169–187, Birkhauser-Verlag, Basel (1998).

    Google Scholar 

  17. Damiani G. Why are fractals everywhere? Chaos, fractals, models (Guineani G., and Salvatori F., eds) pp. 384–390, Italian University Press, Pavia (1998).

    Google Scholar 

  18. Layzer D. The arrow of time. Sci. Am., 233 (6): 56–69 (1975).

    Google Scholar 

  19. Zipf G.K. The human behavior and the principle of least effort. Addison-Wesley Press, Cambridge (1949).

    Google Scholar 

  20. Kauffman S.A. The origins of order. Oxford University Press, New York (1993).

    Google Scholar 

  21. Nicolis G., and Prigogine. Self-Organization in Non-Equilibrium Systems. From Dissipative structures to Order through Fluctuations. Wiley, New York (1977).

    Google Scholar 

  22. Damiani G., and Della Franca P. Transizioni di fase e controllo dei metabolismo. In: La matematizzazione della biologia. Storia e problematiche attuali. (Cerrai P., Freguglia P., eds) pp. 97–106, QuattroVenti, Urbino (1997).

    Google Scholar 

  23. Eigen M., and Schuster P. The Hypercycle. Springer Verlag, Heidelberg (1979).

    Book  Google Scholar 

  24. Szent-Gyorgyi A. Bioelectronics - A study in cellular regulation, defence, and cancer. Academic Press, New York-London (1968).

    Google Scholar 

  25. Yates F.E. Fractal Applications in Biology: Scaling Time in Biochemical Networks. Methods in Enzymology 210: 636–675 (1992).

    Article  Google Scholar 

  26. Jones D.B., Coulson A.F.W., and Duff G.A. Sequence homologies between hsp60 and autoantigens Immunol. Today 14: 115–118 (1993).

    Google Scholar 

  27. Lappé M. The Tao of Immunology. Plenum Publishers, New York (1997).

    Google Scholar 

  28. Ou D., Mitchell L.A., and Tingle A.J. New categorization or HLA DR alleles: a functional basis. Hum. Immunol. 59: 665–676 (1998).

    Google Scholar 

  29. Thaler D. The evolution of genetic intelligence. Science, 264: 224–225 (1994).

    Article  Google Scholar 

  30. Burgos J.D. Fractal representation of the immune B cell repertoire. BioSystems 39: 19–24 (1996).

    Article  Google Scholar 

  31. Burgos J.D., and Moreno-Tovar P. Zipf-scaling behavior in immune system. BioSystems 39: 227–232 (1996).

    Article  Google Scholar 

  32. Russel G.C., Davies C.J., Andersson L., Ellis S.A., Hensen E.J., Lewin H.A., Mikko S., Muggli-Cockett N.E., and van der Poel J.J. (1997) BoLA class II nucleotide. Animal Genet 28: 169–180 (1996).

    Article  Google Scholar 

  33. Solé R.V., Manrubia S.C., Benton M., and Bak P. Self-similarity of extinction statistics in the fossil record. Nature 388: 764–767 (1997).

    Article  Google Scholar 

  34. Harte J., Kinzig A., and Green J. Self-similarity in the distribution and abundance of species. Science 284: 334–336 (1999).

    Article  Google Scholar 

  35. Ritchie M.E. and Olff H.123 Spatial scaling laws yield a synthetic theory of biodiversity Nature 400: 557–560 (1999).

    Google Scholar 

  36. Burlando B. The fractal dimension of taxonomic systems. Journal of Theoretical Biology. 146: 99–114 (1990).

    Article  Google Scholar 

  37. May R.M. The search for patterns in the balance of nature: Advances and retreats. Ecology 67:1115–26 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Damiani, G. (2002). Metabolic Hypercycles, Universality and Fractals in Biological Evolution. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics