Skip to main content

The Biological Meanings of DNA Correlations

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 478 Accesses

Abstract

A considerable amount of evidence has been obtained in recent years on the statistics of nucleotide distributions in DNA sequences. The present paper is ventured on the problem of the biological meaning of the fractal nature of DNA. The relative weight of a class of non random sequences (purine, pyrimidine, A-T, G-C. 1-3 nucleotide repeats)was analysed in a large series of genomes and found to increase during evolution and to be higher in non-coding than in coding regions, “homogeneous” tracts being clustered with a non random distribution of distances. Experimental studies on variation in non-coding sequences offer evidence of a possible physiological and evolutionary role of homogeneous tracts at the intra-and interspecific level, connected with their hypervariable nature and their effects on DNA conformational landscapes. The “double-face” nature of such sequences, contributing to functional constraints to randomness but at the same time inducing additional noise and thereby plasticity to the genome is discussed in a new integrated view of the selection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buiatti M. L’analogia informatica del dogma centrale e le conoscenze attuali della biologia. In: L’informazione nelle Scienze della vita, B.Continenza, E. Gagliasso Eds, Franco Angeli, Milano, (1998).

    Google Scholar 

  2. Li W. The study of correlations structure of DNA sequences a critical review. Computers Chem. 21 (4):257 (1997).

    Article  Google Scholar 

  3. Trifonov E.N. 3–10.5–200 and 400 periodicities in genome sequences. Physica A 249:511 (1998).

    Article  Google Scholar 

  4. Allegrini P., Barbi M., Grigolini P., WestB.J.Dynamical model for DNA sequences. Phys. Rev. E 52:5281 (1996).

    Google Scholar 

  5. HerzelH.Grosse I. Correlations in DNA sequences: the role of protein coding segments. Phys. Rev. E 55:800 (1997).

    Article  Google Scholar 

  6. Peng C.K.,. Buldyrev S.V, Goldberger A.L., Havlin S., Sciortino F., Simon M., Stanley H.E. Long range correlation in nucleotide sequences. Nature 356:168. (1992).

    Article  Google Scholar 

  7. Ma S. K. Statistical Mechanics. Word Scientific, Philadelphia (1985).

    Book  MATH  Google Scholar 

  8. AllegriniP.Grigolini P., WestB.J.Dynamical approach to Lévy processes. Phys. Rev.E 54:4760 (1996).

    Article  Google Scholar 

  9. Allegrini P., Buiatti M., Grigolini P., WestB.J.Non gaussian statistic of anomalous diffusion: The DNA sequences of prokaryotes. Phys. Rev. E 58:3640 (1998).

    Google Scholar 

  10. Voss R.V. Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences. Phys. Rev. Lett. 68(25):3805–3808 (1992).

    Article  Google Scholar 

  11. Dokholyan N.V., Buldyrev S.V., Havlin S., Stanley H.E. Distribution of Base Pair Repeats in Coding and Non-coding DNA Sequences Phys. Rev. Lett. 79(25):5182–5185 (1997).

    Article  Google Scholar 

  12. Li W., Kaneko K. Long-range correlation and partial 1e spectrum in a noncoding DNA sequence. Europhys. Lett. 17:655–660 (1992).

    Article  Google Scholar 

  13. Almirantis Y. A standard. deviation based quantification differentiates coding from non-coding DNA sequences and gives insight to their evolutionary history. J. Theor. Biol 196:297–308 (1999).

    Google Scholar 

  14. Herzel H., Weiss O., Trifonov E.N. 10–1 lbp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics 15(3):187–193 (1999).

    Article  Google Scholar 

  15. Gray H.W. Rickettsia typhus and the mitochondrial connection. Nature 396:109–110 (1998).

    Article  Google Scholar 

  16. Sia E.A., Butler C.A., Dominska M., Greenwell P., Fox T.D., Petes T.D. Analysis of microsatellite mutations in the mitochondrial DNA ofSaccharomyces cerevisiae.Proc. Natl. Acad. Sci. USA 97(1):250–255 (2000).

    Article  Google Scholar 

  17. Soranzo N., Provan J., Powell W. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42(1):158–161 (1999).

    Article  Google Scholar 

  18. Lió P., Politi A., Ruffo S., Buiatti M. Analysis of genomic patchiness ofHaemophilus influenzaeandSaccharomyces cerevisiaechromosomes. J. Theor. Biol. 183:455–469 (1996).

    Article  Google Scholar 

  19. Lk) P., Politi A., Buiatti M., Ruffo S. High statistics block entropy measures of DNA sequences. J. Theor. Biol. 180:151–160 (1996).

    Article  Google Scholar 

  20. Cocho G, Rius J.L. Discrete aspects of morphogenesis and gene dynamics. in Goodwin B.,Saunders R., Theoretical Biology, Edimburgh University Press, Edinburgh (1989).

    Google Scholar 

  21. Jovin T.M., Soumpasis D.M., McIntosh L.P. The transition between B- and Z-DNA. Annu. Rev. Phys. Chem 38:521–560 (1987).

    Article  Google Scholar 

  22. Wang A.H.J., Quigley G.J., Kolpak F. J. Crawford J. L., van Boom J. H., Van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686 (1979).

    Article  Google Scholar 

  23. Behe M.J. An overabundance of long oligopurine tracts occurs in the genome of simple and complex eukaryotes. Nucleic Acids Res. 23(4):689–695 (1995).

    Article  Google Scholar 

  24. Alexeev D.G., Lipanov A.A., Skuratovskii I.Ya. Poly(dA)- poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 325:821823 (1987).

    Article  Google Scholar 

  25. Wells R.D., Collier D.A., Hanvey J.C. Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine•oligopyrimidine sequences. FASEB J. 2:2939–2949 (1988).

    Google Scholar 

  26. Catasti P., Chen X., Santhana Mariappan, S.V., Bradbury E.M., Gupta G. DNA repeats in the human genome. Genetica 106:15–36 (1999).

    Article  Google Scholar 

  27. Iyer V., Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14(11):2570–2579 (1995).

    Google Scholar 

  28. Gabrielian A., Bolshoy A. Sequence complexity and DNA curvature. Comp. & Chem. 23:263–274 (1999).

    Article  Google Scholar 

  29. Bogani P., Simoni A., Lib P., and Buiatti M. Genome flux in tomato cell clones cultured in vitro in different physiological equilibria. II. A RAPD analysis of variability. Genome 39: 846–853 (1996).

    Article  Google Scholar 

  30. Welsh, J., McClelland, M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218 (1990).

    Article  Google Scholar 

  31. Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., & Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535 (1990).

    Article  Google Scholar 

  32. Herzel H., Trifonov E.N., Weiss O., & Große I. Interpreting correlations in Biosequences. Physica A 249:449–459 (1998).

    Article  Google Scholar 

  33. Intrieri M.C., Buiatti M. The horizontal transfer ofAgrobacterium rhizogenesgenes and the evolution of the genusNicotiana.Mol. Phylogenet. Evol. in press (2000).

    Google Scholar 

  34. Buiatti M, and Buiatti M jr., The living state of matter, Biology Forum in press (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Buiatti, M., Acquisti, C., Mersi, G., Bogani, P., Buiatti, M. (2002). The Biological Meanings of DNA Correlations. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics