Skip to main content

Fractal Scaling of Heartrate Dynamics in Health and Disease

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

The dynamics of heartbeat interval time series were studied by a modified random walk analysis recently introduced as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlations of beat-to-beat fluctuations generated by the dynamical system, after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent which, in healthy subjects, is - 1.0. The finding of a scaling coefficient of 1.0, indicating scale-invariant long-range power-law correlations (1/f noise) of heartbeat fluctuations, would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. The 1/f dynamics of heartbeat interval fluctuations are unaffected by exposure to chronic hypoxia at high altitude (> 5000 m) suggesting that the neuroautonomic cardiac control system is preadapted to hypoxia. Functional (hypothermia, cardiac disease) and/or structural (cardiac transplantation, early cardiac development) inactivation of neuroautonomic control is associated with the breakdown of fractal complexity reflected by anticorrelated random walk-like dynamics, indicating that in these conditions the heart is unadapted to its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak P., Creutz M. Fractals and self-organized criticality. In: Fractals in Science. (Bunde A., Havlin S. (eds.), pp. 27–47, Springer, New York (1994).

    Chapter  Google Scholar 

  2. Beran J. Statistics for Long-Memory Processes. Chapman & Hall, New York (1994).

    MATH  Google Scholar 

  3. Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Stanley H.E., Stanley M.H.R., Simons M. Fractal landscapes and molecular evolution: modeling of the myosin heavy chain gene family. Biophysical Journal 65: 2673–2679 (1993).

    Article  Google Scholar 

  4. Grassi B., Marconi C., Meyer M., Rieu M., Cerretelli P. Gas exchange and cardiovascular kinetics upon different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82: 1952–1962 (1997).

    Google Scholar 

  5. Hausdorff J.M., Peng C.-K., Ladin Z., Wei J.Y., Goldberger A.L. Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J. Appl. Physiol. 78: 349–358 (1995).

    Google Scholar 

  6. Hausdorff J.M., Purdon P.L., Peng C.-K., Ladin Z., Wei J.Y., Goldberger A.L. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80: 1448–1457 (1996).

    Google Scholar 

  7. Kobayashi M., Mysha T. 1/f fluctuation of heart beat period. IEEE Trans. Biomed. Eng. 29: 456–457 (1982).

    Article  Google Scholar 

  8. Meyer M., Marconi C., Grassi B., Rieu M., Cerretelli P., Cabrol C. Adjustment of cardiac output to step exercise in heart transplant recipients. Applied Cardiopulmonary Pathophysiology 4: 213–223 (1992).

    Google Scholar 

  9. Meyer M., Marconi C., Ferretti G., Fiocchi R., Cerretelli P., Skinner J.E. Heart rate variability in the human transplanted heart: nonlinear dynamics and QT vs RR-QT alterations during exercise suggest a return of neurocardiac regulation in long-term recovery. Integrative Physiological and Behavioral Science 31: 289–305 (1996).

    Article  Google Scholar 

  10. Murphy D.A., O’Blenes S., Hanna B.D., Armour J.A. Functional capacity of nicotine-sensitive canine intrinsic cardiac neurons to modify the heart. Am. J. Physiol. 266: R1127–R1135 (1994).

    Google Scholar 

  11. Peng C.-K., Mietus J., Hausdorff J.M. Havlin S., Stanley H.E., Goldberger A.L. Long-range anti-correlations and non-Gaussian behavior of the heartbeat. Physical Review Letters 70: 1343–1346 (1993).

    Article  Google Scholar 

  12. Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides. Physical Review E 49: 1685–1689 (1994).

    Article  Google Scholar 

  13. Peng C.-K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5: 82–87 (1995).

    Article  Google Scholar 

  14. Saul J.P., Albrecht P., Berger R.D., Cohen R.J. Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comput. Cardiol. 14: 419–422 (1988).

    Google Scholar 

  15. Samorodnitsky G., Taqqu M.S. Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. Chapman & Hall, New York (1994).

    Google Scholar 

  16. Skinner J.E., Kresh J.Y. Self-organization in a simple biological system: the intrinsic cardiac nervous system. In: Nonlinear Techniques in PhysiologicalTime Series Analysis (Mayer-Kress, G., Kantz H., Kurths J., eds.), pp. 129–166, Springer, New York (1996).

    Google Scholar 

  17. Stanley H.E. Introduction to Phase Transitions and Critical Phenomena. Oxford Univ. Press, New York (1971).

    Google Scholar 

  18. West B.J. Physiology in fractal dimensions: error tolerance. Ann. Biomed. Engin. 18: 135–149 (1990).

    Article  Google Scholar 

  19. Yamamoto Y., Nakamura Y., Sato H., Yamamoto M., Kato K., Hughson R.L. On the fractal nature of heart rate variability in humans: effects of vagal blockade. Am. J. Physiol. 269: R830–R837 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Meyer, M. (2002). Fractal Scaling of Heartrate Dynamics in Health and Disease. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics