Skip to main content

Bone Architecture Measured by Fractal Dimension and Connectivity Indices is More Precociously Altered than Mineral Content in the Orchidectomized Rat

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 479 Accesses

Abstract

Fractal dimension is a powerful tool for measuring the disorganization of the trabecular network in osteoporosis. Forty eight male Wistar rats were studied at 2, 4, 8 and 16 weeks. In each group, 6 rats were orchidectomized (ORX) and 6 sham-operated. The bone mineral content (BMC) was measured by DXA. BMC of the whole body, tibia and femur were reduced at 16 w in the ORX group. Standard histomorphometry and architecture analysis was performed on the tibia (strut identification, star volumes, Euler-Poincaré number (E) and Kolmogorov fractal dimension (Dk)). Bone volume was significantly decreased in the ORX from the 4`h w. After 2 w, Dk was the first modified parameter. In the ORX model, Dk appeared the most potent descriptor of trabecular bone disorganization by revealing earliest changes at the network level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peck W. A., Burkhardt, P. and Christiansen, C. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am. J. Med. 94:645–650 (1993).

    Google Scholar 

  2. Eastell R., Boyle, I. T., Compston, J., Cooper, C., Fogelman, I., Francis, R. M., Hosking, D. J., Purdie, D. W., Ralston, S., Reeve, J., et al. Management of male osteoporosis: report of the UK consensus group. Quarterly Journal of Medicine. 91:71–92 (1998).

    Article  Google Scholar 

  3. Wink C. S. and Felts, W. J. L. Effects of castration on bone structure of male rats. A model of osteoporosis. Calcif. Tissue Int. 32:77–82 (1980).

    Article  Google Scholar 

  4. Verhas M., Schoutens, A., L’hermite-Baleriaux, M., Dourov, N., Verschaeren, A., Mone, M. and Heilporn, A. The effect of orchidectomy on bone metabolism in aging rats. Calcif. Tissue Int. 39:74–77 (1986).

    Article  Google Scholar 

  5. Gurkan L., Ekeland, A., Gautvik, K. M., Langeland, N., Ronningen, H. and Solheim, L. F. Bone changes after castration in rats: a model of osteoporosis. Acta Orthop. Scand. 57:67–70 (1986).

    Google Scholar 

  6. Gunness M. and Orwoll, E. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J. Bone Miner. Res. 10:1735–1743 (1995).

    Article  Google Scholar 

  7. Li M., Jee, W. S. S., Ke, H. Z., Tang, L. Y., Ma, Y. F., Liang, X. G. and Setterberg, R. B. Prostaglandin E2 administration prevents bone loss induced by orchidectomy in rats. J. Bone Miner. Res. 10:66–73 (1995).

    Article  Google Scholar 

  8. Vanderschueren D., Van Herck, E., Schot, P., Rush, E., Einhorn, T., Geusens, P. and Bouillon, R. The aged male rat as a model for human osteoporosis: evaluation by mondestructive measurements and biomechnical testing. Calcif. Tissue Int. 53:342–347 (1993).

    Article  Google Scholar 

  9. Genant H., Engelke, K., Fuerst, T., Glüer, C. C., Gramp, S., Harris, S., Jergas, M., Lang, T., Lu, Y., Majumdar, S., et al. Non invasive assessment of bone mineral and structure: state of art. J. Bone Miner. Res. 11: 707–730 (1996).

    Article  Google Scholar 

  10. Kanis J. A. Diagnosis of osteoporosis. Osteoporos. Int. 7:S108–S116 (1997).

    Article  Google Scholar 

  11. Compston J. E. Connectivity of cancellous bone: Assessment and mechanical implications. Bone. 15:463–466 (1994).

    Article  Google Scholar 

  12. Chappard D., Legrand, E., Pascaretti, C., Audran, M. and Baslé, M. F. Comparison of eight histomophometric methods for measuring trabecular bone architecture by image analysis on histological sections. Microsc. Res. Techn. 45:303–312 (1999).

    Article  Google Scholar 

  13. Chappard D., Palle, S., Alexandre, C., Vico, L. and Riffat, G. Bone embedding in pure methyl methacrylate at low temperature preserves enzyme activities. Acta Histochem. 81:183–190 (1987).

    Article  Google Scholar 

  14. Parfitt A. M., Drezner, M. K., Glorieux, F. G., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M. and Recker, R. R. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2:595–610 (1987).

    Article  Google Scholar 

  15. Parfitt A. M., Mathews, C. H. E., Villanueva, A. R., Kleerekoper, M., Frame, B. and Rao, D. S. Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J. Clin. Invest. 72:1396–1409 (1983).

    Google Scholar 

  16. Mellish R. W. E., Ferguson-Pell, M. W., Cochran, G. V. B., Lindsay, R. and Dempster, D. W. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J. Bone Miner. Res. 6:689–696 (1991).

    Article  Google Scholar 

  17. Compston J. E., Mellish, R. W. E. and Garrahan, N. J. Age-related changes in iliac crest trabecular micro-anatomic bone in man. Bone. 8:289–312 (1987).

    Article  Google Scholar 

  18. Levitz P. and Tchoubar, D. Disordered porous solids: from chord distributions to small angle scattering. J. Phys. - France. 2:771–790 (1992).

    Article  Google Scholar 

  19. Turner R. T., Hannon, K. S., Demers, L. M., Buchanan, J. and Bell, N. H. Differential effects of gonadal function on bone histomorphometry in male and female rats. J. Bone Miner. Res. 4:557–563 (1989).

    Article  Google Scholar 

  20. Ammann P, Rizzoli, R., Slosman, D. and Bonjour, J. P. Sequential and precise in vivo measurement of bone mineral density in rats dual-energy X-ray absorptiometry. J. Bone Miner. Res. 7:311–316 (1992).

    Article  Google Scholar 

  21. Rosen H. N., Tollin, S., Balena, R., Middlebrooks, V. L., Beamer, W. G., Donohue, L. R., Rosen, C., Turner, A., Holick, M. and Greenspan, S. L. Differentiating between orchidectomized rats and controls using measurements of trabecular bone density: a comparison among DXA, histomorphometry, and peripheral quantitative computerized tomography. Calcif. Tissue Int. 57:35–39 (1995).

    Article  Google Scholar 

  22. Chappard D., Legrand, E., Audran, M. and Baslé, M. F. Trabecular bone architecture in osteoporosis: a comparison of several histomorphometric methods. Morphologie. 83:17–20 (1999).

    Google Scholar 

  23. Fazzalari N. L. and Parkinson, I. H. Fractal dimension and architecture of trabecular bone. J. Pathol. 178:100–105 (1996).

    Article  Google Scholar 

  24. Haire T. J., Hodgskinson, R., Ganney, P. S. and Langton, C. M. A comparison of porosity, fabric and fractal dimension as predictors of the Young’s modulus of equine cancellous bone. Med. Eng. Phys. 20:588–593 (1998).

    Article  Google Scholar 

  25. Majumdar S., Weinstein, R. S. and Prasad, R. Application of fractal geometry techniques to the study of trabecular bone. J. Bone Miner. Res. 20:1611–1619 (1993).

    Google Scholar 

  26. Weinstein R. S. and Majumdar, S. Fractal geometry and compression fracture. J. Bone Miner. Res. 9:1797–1802 (1994).

    Article  Google Scholar 

  27. Chappard D., Legrand, E., Baslé, M. F., Fromont, P., Racineux, J. L., Rebel, A. and Audran, M. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J. Bone Miner. Res. 11: 676–685 (1996).

    Article  Google Scholar 

  28. Lane N. E., Thompson, J. M., Haupt, D., Kimmel, D. B., Modin, G. and Kinney, J. H. Acute changes in trabecular bone connectivity and osteoclast activity in the ovariectomized rat in vivo. J. Bone Miner. Res. 13:229–236 (1998).

    Article  Google Scholar 

  29. Kippo K., Hannuniemi, R., Isaksson, P., Lauren, L., Osterman, T., Peng, Z., Tuukkanen, J. and Kuurtamo, P. Clodronate prevents osteopenia and loss of trabecular connectivity in estrogen-deficient rats. J. Bone Miner. Res. 13:287–296 (1998).

    Google Scholar 

  30. Miller S. C. and Wronski, T. J. Long-term osteopenic changes in cancellous bone structure in ovariectomized rats. Anat. Rec. 433–441 (1993).

    Google Scholar 

  31. Stepan J. J., Pospichal, J., Presl, J. and Pacovsky, V. Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women. Bone. 8:279–284 (1987).

    Article  Google Scholar 

  32. Wronski T. J., Schenck, P. A., Cintron, M. and Walsh, C. C. Effect of body weight on osteopenia in ovoriectomized rats. Calcif. Tissue Res. 40:155–159 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this paper

Cite this paper

Libouban, H., Moreau, M.F., Legrand, E., Audran, M., Basle, M.F., Chappard, D. (2002). Bone Architecture Measured by Fractal Dimension and Connectivity Indices is More Precociously Altered than Mineral Content in the Orchidectomized Rat. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8119-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8119-7_18

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9445-6

  • Online ISBN: 978-3-0348-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics