Skip to main content

Hilbert Type Numbers for Polynomial ODE’s

  • Conference paper
Nonlinear Equations: Methods, Models and Applications

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 54))

  • 477 Accesses

Abstract

Consider the polynomial ordinary differential equation of first order where al…, anandf:[0, 1] — IR are continuous functions. We will say that a solutionu(t)of (1) is a closed solution if it is defined in the interval [0, 1] and u(0) = u(1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calanchi, M., Ruf, B.On the number of closed solutions for polynomial ODE’s and a special case of Hilbert’s 16 th problemAdv. Diff. Equ. 7, 2002, p. 197–216

    MathSciNet  Google Scholar 

  2. Deimling, K.Nonlinear Functional Analysis Springer1985

    Google Scholar 

  3. Hilbert, D., Mathematical Problems, Bulletin AMS, 8, 1902

    Google Scholar 

  4. Ilyashenko, Yu.Finiteness theorems for limit cyclesAmer. Math. Soc., Providence, RI, 1991

    Google Scholar 

  5. Ilyashenko, Yu.Hilbert-type numbers for Abel equations growth and zeros of holomorphic functionsNonlinearity 13, 2000, p. 1337–1342

    Article  MathSciNet  Google Scholar 

  6. Krasnosel’ski, M.A.Topological Methods in the Theory of Nonlinear Integral EquationsPergamon Press, 1963, p. 123–140

    Google Scholar 

  7. Lloyd, N.G.The number of periodic solutions of the equation z = z` v +p i (t)z 1V-1 + • • • + pN (t)Proc. London Math. Soc. 27, 1973, p. 667–700

    Article  MathSciNet  MATH  Google Scholar 

  8. Neto, A.L.On the number of solutions of the equation dt = o a~(t)x 0 <t G 1 for which x(0) =x(1), Inventiones Math., 59, 1980, p. 67–76

    Article  MATH  Google Scholar 

  9. Ruf, B.Bounds on the number of solutions for elliptic problems with polynomial nonlinearitiesJ. Diff. Equ. 151, 1999, p. 111–133

    Article  MathSciNet  MATH  Google Scholar 

  10. Tarantello, G.On the number of solutions for the forced pendulum equationJ. Diff. Equ. 80, 1989, p. 79–93

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Calanchi, M., Ruf, B. (2003). Hilbert Type Numbers for Polynomial ODE’s. In: Lupo, D., Pagani, C.D., Ruf, B. (eds) Nonlinear Equations: Methods, Models and Applications. Progress in Nonlinear Differential Equations and Their Applications, vol 54. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8087-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8087-9_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9434-0

  • Online ISBN: 978-3-0348-8087-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics