Skip to main content

Computable Information Content and a Simple Application to the Study of DNA

  • Conference paper
Nonlinear Equations: Methods, Models and Applications

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 54))

  • 475 Accesses

Abstract

We present some new ideas about complexity and entropy of a dynamical system. These ideas have been developed by an interdisciplinary group in Pisa ([5], [7], [16], [17], [3]) and the theoretical work is supported by application to several complex systems, as to turbulent regimes or DNA sequences. Here we present the main theoretical concepts and some simple applications to the study of DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegrini P., Barbi M., Grigolini P., West B.J.“Dynamical model for DNA sequences”Phys. Rev. E, 52, 5281–5297 (1995).

    Article  Google Scholar 

  2. Allegrini P., Grigolini P., West B.J., “Adynamical approach to DNA sequences”Phys. Lett. A, 211, 217–222 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. Allegrini P., Benci V., Grigolini P., Hamilton P., Ignaccolo M., Menconi G., Palatella L., Raffaelli G., Scafetta N., Virgilio M., Yang J.Compression and Diffusion: A Joint Approach to Detect Complexitywork in preparation, submitted to Discrete and Continuous Dynamical Systems - B (2001), electronic preprint: cond-mat/0202123.

    Google Scholar 

  4. Allison L., Stern L., Edgoose T., Dix T.I., “Sequence complexity for biological sequence analysis”Comput. Chem.24: 43–55, 2000.

    Google Scholar 

  5. Argenti F., Benci V., Cerrai P., Cordelli A., Galatolo S., Menconi G.“Information and dynamical systems: a concrete measurement on sporadic dynamics”to appear in Chaos, Solitons and Fractals (2001).

    Google Scholar 

  6. Batterman R., White H.“Chaos and algorithmic complexity”Found. Phys. 26, 307–336 (1996).

    Article  MathSciNet  Google Scholar 

  7. Benci V., Bonanno C., Galatolo S., Menconi G., Ponchio F.“Information complexity and entropy: a new approach to theory and measurement methods” http://arXiv.org/abs/math.DS/0107067(2001).

  8. Bonanno C.“The Manneville map: topological metric and algorithmic entropy”work in preparation (2001).

    Google Scholar 

  9. Bonanno C., Menconi G.“Computational information for the logistic map at the chaos threshold”arXiv E-print no. nlin CD/0102034 (2001), to appear on Discrete and Continuous Dynamical Systems.

    Google Scholar 

  10. Brudno A.A.“Entropy and the complexity of the trajectories of a dynamical system”Trans. Moscow Math. Soc. 2, 127–151 (1983).

    Google Scholar 

  11. Buiatti M., Acquisti C., Mersi G., Bogani P., Buiatti M., “The biological meaning of DNA correlations”Mathematics and Biosciences in interactionBirkhäuser ed., in press (2000).

    Google Scholar 

  12. Buiatti M., Grigolini P., Palatella L.“Nonextensive approach to the entropy of symbolic sequences”Physica A268214 (1999).

    Article  Google Scholar 

  13. Chaitin G.J.Information randomness and incompleteness. Papers on algorithmic information theory.,World Scientific, Singapore (1987).

    Google Scholar 

  14. Galatolo S.“Pointwise information entropy for metric spaces”Nonlinearity 121289–1298 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  15. Galatolo S.“Orbit complexity by computable structures”Nonlinearity 13 1531–1546 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. Galatolo S.“Orbit complexity and data compression”Discrete and Continuous Dynamical Systems 7 477–486 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. Galatolo S.“Orbit complexity initial data sensitivity and weakly chaotic dynamical systems”arXiv E-print no. math.DS/0102187 (2001).

    Google Scholar 

  18. Gaspard P.,Wang X.J.“Sporadicity: between periodic and chaotic dynamical behavior”Proc. Natl. Acad. Sci. USA 85,4591–4595 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  19. Gusev V.D., Nemytikova L.A., Chuzhanova N.A., “On the complexity measures of genetic sequences”Bioinformatics 15: 994–999, 1999.

    Article  Google Scholar 

  20. Katok A., Hasselblatt B.Introduction to the Modern Theory of Dynamical Systems,Cambridge University Press (1995).

    Google Scholar 

  21. Khinchin A IMathematical foundations of Information TheoryDover Publications, New York.

    Google Scholar 

  22. Lempel A., Ziv A.“A universal algorithm for sequential data compression”IEEE Trans. Information Theory IT 23337–343 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  23. Lempel A., Ziv J.“Compression of individual sequences via variable-rate coding”,IEEE Transactions on Information Theory IT24530–536 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. Li W.“The study of DNA correlation structures of DNA sequences: a critical review”Computers chem. 21257–271 (1997).

    Article  Google Scholar 

  25. Manneville P.“Intermittency self-similarity and 1/f spectrum in dissipative dynamical systems”,J. Physique 411235–1243 (1980).

    Article  MathSciNet  Google Scholar 

  26. Kosaraju S. Rao, Manzini G.“Compression of low entropy strings with Lempel-Ziv algorithms”SIAM J. Comput. 29 893–911 (2000).

    MathSciNet  MATH  Google Scholar 

  27. Milosavljevic A., Jurka J., “Discovering simple DNA sequences by the algorithmic significance method”, CABIOS9:407–411, 1993.

    Google Scholar 

  28. Pesin Y.B.“Characteristic Lyapunov exponents and smooth ergodic theory”Russ. Math. Surv. 3255–112 (1977).

    Article  MathSciNet  Google Scholar 

  29. Politi, A.; Badii, R.“Dynamical `strangeness’ at the edge of chaos”. J. Phys. A 30 (1997), no. 18, L627–L633.

    Article  MathSciNet  MATH  Google Scholar 

  30. Rivals E., Delgrange O., Delahaye J.-P., Dauchet M., Delorme M.-O., Henaut A., Ollivier E.“Detection of significant patterns by copression algorithms: the case of approximate tandem repeats in DNA sequences” CABIOS 13: 131–136, 1997.

    Google Scholar 

  31. Tsallis C.“Possible generalization of Boltzmann-Gibbs statistics”J. Stat. Phys. 52479 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsallis C., Plastino A.R., Zheng W.M.“Power-law sensitivity to initial conditions - new entropic representation”Chaos Solitons Fractals 8885–891 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Benci, V., Menconi, G. (2003). Computable Information Content and a Simple Application to the Study of DNA. In: Lupo, D., Pagani, C.D., Ruf, B. (eds) Nonlinear Equations: Methods, Models and Applications. Progress in Nonlinear Differential Equations and Their Applications, vol 54. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8087-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8087-9_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9434-0

  • Online ISBN: 978-3-0348-8087-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics