Skip to main content

Solitary Waves Solutions of a Nonlinear Schrödinger Equation

  • Conference paper
  • 477 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 54))

Abstract

The aim of this note is to prove the existence of standing waves solutions of the following nonlinear Schrödinger equation

$$ i\frac{{\partial \psi }} {{\partial t}} = - \Delta \psi + V(x)\psi + \varepsilon N(\psi ), $$

where NM is a nonlinear differential operator. In [8] and [9] Benci and the authors proved the existence of a finite number of solutions (µ(e), u(e)) of the eigenvalue problem

$$ - \Delta u + V\left( x \right)u + \varepsilon N\left( u \right) = \mu u $$
(Pε)

where N(u) = −Δ p u + W′(u). The number of solutions can be as large as one wants. Since W is singular in a point these solutions are characterized by a topological invariant, the topological charge. A min-max argument is used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abbondandolo, V. BenciSolitary waves and Bohmian mechanicsto appear in Proceedings of the National Academy of Sciences of the United States of America.

    Google Scholar 

  2. M. Badiale, V. Benci, T. D’aprileExistence multiplicity and concentration of bound states for a quasilinear elliptic field equation,Calculus of Variations and Partial Differential Equations 12 3 (2001), 223–258.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bahri, H. BerestyckiA perturbation method in critical point theory and applicationsTransactions of the American Mathematical Society 267 1 (1981), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Benci, P. D’avenia, D. Fortunato, L. PisaniSolitonsin several space dimensions: Derrick’s problem and infinitely many solutions, Archive for Rational Mechanics and Analysis 154 4 (2000), 297–324.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Benci, D. FortunatoDiscreteness Conditions of the Spectrum of Schrödinger OperatorsJournal of Mathematical Analysis and Applications 64 3, 1978.

    Article  MathSciNet  Google Scholar 

  6. V. Benci, D. Fortunato, A. Masiello, L. PisaniSolitons and the electromagnetic fieldMathematische Zeitschrift 232 1 (1999), 73–102.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Benci, D. Fortunato, L. PisaniSoliton-like solution of a Lorentz invariant equation in dimension 3Reviews in Mathematical Physics 10 3 (1998), 315–344.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Benci, A.M. Micheletti, D. Visetti, Aneigenvalue problem for a quasilinear elliptic field equationto appear in Journal of Differential Equations.

    Google Scholar 

  9. V. Benci, A.M. Micheletti, D. VisettiAn eigenvalue problem for a quasilinear elliptic field equation onRn, Topological Methods in Nonlinear Analysis 17 2 (2001), 191–212.

    MathSciNet  MATH  Google Scholar 

  10. F.A. Berezin, M.A. ShubinThe Schrödinger EquationKluwer Academic Publishers, 1991.

    Google Scholar 

  11. P. BolleOn the Bolza problemJournal of Differential Equations 152 2 (1999), 274–288.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Bolle, N. Ghoussoub, H. TehraniThe multiplicity of solutions in non-homogeneous boundary value problemsManuscripta Mathematica 101 3 (2000), 325–350.

    Article  MathSciNet  MATH  Google Scholar 

  13. C.H. DerrickComments on Nonlinear Wave Equations as Model for Elementary ParticlesJournal of Mathematical Physics 5 (1964), 1252–1254.

    Article  MathSciNet  Google Scholar 

  14. U. Enz, Discrete MassElementary Length, and a Topological Invariant as a Consequence of a Relativistic Invariant Variational PrinciplePhysical Review 131 (1963), 1392.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Manes, A.M. MichelettiUn’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordineBoll. U.M.I. (4) (7), 1973, 285–301.

    MathSciNet  Google Scholar 

  16. P.H. RabinowitzMultiple critical points of perturbed symmetric functionalsTransactions of the American Mathematical Society 272 2 (1982), 753–769.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Scott Russell, Report on waves, Rep. 14th Meeting of the British Association for the Advancement of Science, John Murray, London 1844.

    Google Scholar 

  18. W.A. StraussExistence of solitary waves in higher dimensionsCommunications in Mathematical Physics 55 2 (1977), 149–162.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. StruweInfinitely many critical points for functionals which are not even and applications to superlinear boundary value problemsManuscripta Mathematica 32 3–4 (1980), 335–364.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, PhD Thesis, Department of Mathematics, University of Pisa, 15th June 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Micheletti, A.M., Visetti, D. (2003). Solitary Waves Solutions of a Nonlinear Schrödinger Equation. In: Lupo, D., Pagani, C.D., Ruf, B. (eds) Nonlinear Equations: Methods, Models and Applications. Progress in Nonlinear Differential Equations and Their Applications, vol 54. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8087-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8087-9_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9434-0

  • Online ISBN: 978-3-0348-8087-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics