Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 55))

Abstract

In this paper we consider the Willmore flow in three space dimensions. We prove that embedded surfaces can be driven to a self-intersection in finite time. This situation is in strict contrast to the behavior of hypersurfaces under the mean curvature flow, where the maximum principle prevents self-intersections, but very much analogous to the surface diffusion flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. AmannLinear and quasilinear parabolic problems.Vol. I, Birkhäuser, Basel, 1995.

    Book  MATH  Google Scholar 

  2. S.B. AngenentNonlinear analytic semiflows.Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91–107.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bryant, Aduality theorem for Willmore surfaces. J.Diff. Geom. 20 (1984), 23–53.

    MATH  Google Scholar 

  4. B.-Y. ChenOn a variational problem on hypersurfaces.J. London Math. Soc. 2 (1973), 321–325.

    Article  Google Scholar 

  5. G. Da Prato and P. GrisvardEquations d’¨¦volution abstraites nonlin¨¦aires de type parabolique.Ann. Mat. Pura Appl. (4) 120 (1979), 329–396.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Escher, U.F. Mayer, and G. SimonettThe surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29 (1998), 1419–1433.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Kuwert and R. SchätzleGradient flow for the Willmore functional.Comm. Anal. Geom. 10 (2002), 307–339.

    MATH  Google Scholar 

  8. R. KusnerEstimates for the biharmonic energy on unbounded planar domains and the existence of surfaces of every genus that minimize the squared-mean-curvature integralIn Elliptic and parabolic methods in geometry,(Minneapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, 67–72

    Google Scholar 

  9. A. LunardiAnalytic semigroups and optimal regularity in parabolic problems. Birkhäuser, Basel, 1995.

    Book  MATH  Google Scholar 

  10. U.F. MayerA numerical scheme for free boundary problems that are gradient flows for the area functional.Europ. J. Appl. Math. 11 (2000), 61–80.

    Article  MATH  Google Scholar 

  11. U.F. Mayer and G. SimonettClassical solutions for diffusion-induced grain-boundary motion. J.Math. Anal. Appl. 234 (1999), 660–674.

    Article  MathSciNet  MATH  Google Scholar 

  12. U.F. Mayer and G. SimonettSelf-intersections for the surface diffusion and the volume preserving mean curvature flow.Differential Integral Equations 13 (2000), 1189–1199.

    MathSciNet  MATH  Google Scholar 

  13. U.F. Mayer and G. SimonettA numerical scheme for axisymmetric solutions of curvature driven free boundary problems with applications to the Willmore flow. Interfaces and Free Boundaries 4 (2002), 1–22.

    MathSciNet  Google Scholar 

  14. U. PinkallHopf tori in S 3. Invent. Math. 81 (1985), 379–386.

    Article  MathSciNet  MATH  Google Scholar 

  15. U. Pinkall and I. SterlingWillmore surfaces. Math. Intelligencer 9 (1987), 38–43.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. SimonettThe Willmore flow near spheresDifferential Integral Equations 14 (2001),1005–1014

    MathSciNet  MATH  Google Scholar 

  17. L.SimonExistence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1 (1993), 281–326.

    MATH  Google Scholar 

  18. T.J. WillmoreRiemannian Geometry.Claredon Press, Oxford, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Mayer, U.F., Simonett, G. (2003). Self-Intersections for Willmore Flow. In: Iannelli, M., Lumer, G. (eds) Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics. Progress in Nonlinear Differential Equations and Their Applications, vol 55. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8085-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8085-5_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9433-3

  • Online ISBN: 978-3-0348-8085-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics