Skip to main content

Abstract

In the last few years research on so-called soft materials, as opposed to classical states like solids, fluids, and gases, has attracted much attention. Among various types of foams, polymers, etc., granular materials appear as most interesting in view of a variety of surprising experiments, novel connections to mathematical fields like geometry, partial differential equations, particle systems, and also industrial applications [9] [16] [15]. It is surprising that granular matter became an attractive research field only recently since basic experiments on equilibrium configurations have been performed a century ago [1]. In some situations granular matter can be seen as a granular gas (Boltzmann approach for discrete particles with free path length [20]) or as a granular fluid (Savage-Hutter model for height and speed of avalanches [22] [23], an adaptation of the shallow water or St. Venant equations). If large amounts of sand are slowly accumulated then continuum models are appropriate which use the (geometry of sand) and the distinction of a standing layer and a rolling layer [8] [5] [6] [10] [11] [12] [13]. These models are based on the angle of repose of the material considered and two functional laws which describe how the speed of rolling grains is related to the slope of the standing material and how grains are deposited or start moving on a slope. Also in stationary situations with a non-vanishing rolling layer these two parameter functions play a role [12]. Models with instantaneous deposition have been studied in [2] [3] [19]. Another approach to stationary problems has been designed in [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. AuerbachDie Gleichgewichtsfiguren pulverförmiger Massen.Annalen der Physik 5 (1901), 170–219.

    Article  Google Scholar 

  2. G. Aronsson, Amathematical model in sand mechanics: presentation and analysis.SIAM J. Math. 22 (1972), 437–458.

    MathSciNet  MATH  Google Scholar 

  3. G. Aronsson, L.C. Evans, Y. WuFast/slow diffusion and growing sandpiles.J. Diff. Equation. 131 (1996), 304–335.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. BauerProbability Theory. Walter de Gruyter, Berlin, New York, 1996.

    Google Scholar 

  5. J.-P. Bouchaud, M.E. Cates, J.R. Prakash, S.F. Edwards, Amodel for the dynamics of sandpile surfaces.J. Phys. I France 4 (1994), 1383–1410.

    Article  Google Scholar 

  6. J.-P. Bouchaud, M.E. Cates, J.R. Prakash, S.F. EdwardsHysteresis and metastability in a continuum sandpile model.Phys. Rev. Lett. 74 Nr. 11 (1995), 1982–1985.

    Article  Google Scholar 

  7. M.G. Crandall, H. Ishii, P.-L. LionsUser’s guide to viscosity solutions of second order partial differential equations.Bull. Amer. Math. Soc. 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  8. P.G. de GennesDynamique superficielle d’un matériau granulaire.C. R. Acad. Sci. 321 [IIb] (1995), 501–506.

    MATH  Google Scholar 

  9. P.G. de GennesGranular matter.Lecture Notes, Varenna Summer School on Complex Systems, 1996, Società Italiana de Fisica.

    Google Scholar 

  10. K.P. Hadeler, C. KuttlerDynamical models for granular matter.Granular Matter 2 (1999), 9–18.

    Article  Google Scholar 

  11. K.P. Hadeler, C. KuttlerGranular matter in a silo.Granular Matter 3 (2001) 193–197.

    Google Scholar 

  12. K.P. Hadeler, C. KuttlerA model for slowly moving granular matter.In: D. Helbing et al. (eds), Traffic and Granular Flow ‘89, Springer Verlag 2000, 511–516.

    Chapter  Google Scholar 

  13. K.P. HadelerSand Kies Diïnen - Mathematische Modelle granularer Medien. Mitt. Math. Ges. Hamburg 20 (2001), 1–14.

    MathSciNet  Google Scholar 

  14. K.P. Hadeler, C. Kuttler, I. GergertDirichlet and obstacle problems for granular matter. Preprint University of Tübingen, SFB 382 (2002).

    Google Scholar 

  15. D. Helbing, et al. (eds)Traffic and Granular Flow ‘89Springer Verlag, 2000.

    MATH  Google Scholar 

  16. H.J. Herrmann, J.-P. Hovi, S. Luding, (eds)Physics of dry granular media.NATO ASI Series E350, Kluwer Acad. Publ., Dordrecht, 1998.

    Google Scholar 

  17. F. JohnPartial differential equations.3rd ed. Springer Verlag, New York Heidelberg Berlin, 1978.

    Book  MATH  Google Scholar 

  18. D. Kinderlehrer, G. Stampacchia, AnIntroduction to Variational Inequalities and Their Applications.Academic Press, Boston, 1980.

    Google Scholar 

  19. C. KuttlerOn the competitive growth of two sand heaps.Submitted.

    Google Scholar 

  20. S. Luding, O. StraußThe equation of state for almost elastic smooth polydisperse granular gases for arbitrary density. In: T. Pöschel, S. Luding (eds), Granular gases. Lect. Notes in Physics, Springer Verlag, 1999–2000.

    Google Scholar 

  21. L. PrigozhinVariational model of sandpile growth.Euro. J. of Applied Math. 7 (1996), 225–235.

    MathSciNet  MATH  Google Scholar 

  22. S.B. Savage, K. HutterThe motion of a finite mass of granular material down a rough incline.J. Fluid Mech. 199 (1989), 177–215.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.B. Savage, K. HutterThe dynamics of avalanches of granular materials from initiation to runout I: Analysis.Acta Mech. 86 (1991), 201–223.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Hadeler, K.P., Kuttler, C. (2003). Variational Principles for Granular Matter. In: Iannelli, M., Lumer, G. (eds) Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics. Progress in Nonlinear Differential Equations and Their Applications, vol 55. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8085-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8085-5_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9433-3

  • Online ISBN: 978-3-0348-8085-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics