Skip to main content

Velocity Measurements and Crack Density Determination During Wet Triaxial Experiments on Oshima and Toki Granites

  • Chapter
Thermo-Hydro-Mechanical Coupling in Fractured Rock

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

A set of experiments on four samples of Oshima Granite at 15, 40 and 60 MPa confining pressure have been performed in order to investigate the damage behavior of granite submitted to deviatoric stress. In addition an experiment on one sample of Toki Granite at 40 MPa confining pressure was performed, in order to compare and elucidate the structural effects. Using acoustic emission data, strain measurements and elastic wave velocities allow to define consistently a damage domain in the stress space. In this domain, microcracking develops. The microcracking process is, in a first stage, homogeneous and, close to failure, localized. Elastic wave velocities decrease in the damage domain and elastic anisotropy develops. Using KACHANOv’s model (1993), elastic wave velocities have been inverted to derive the full second-order crack density tensor and characterize the fluid saturation state from the fourth-order crack density tensor. Crack density is strongly anisotropic and the total crack density close to failure slightly above one. The results indicate that the rock is saturated in agreement with the experimental conditions. The model is thus shown to be very appropriate to infer from elastic wave velocities a complete quantitative characterization of the damaged rock

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baud, P., Schubnel, A., and Wong, T.F. (2000), Dilatancy, Compaction and Failure Mode in Solnhofen Limestone, JGR 105, 19289–19320.

    Article  Google Scholar 

  • Dale, T. N. (1923), The Commercial Granites of New England, US. Geol. Surv. Bull. 738, 1–97. HADLEY, K. (1975), Azimuthal Variation of Dilatancy, JGR 80, 4845–4850.

    Google Scholar 

  • Gueguen, Y., Chelidze, T., and LE Ravalec, M. (1997), Microstructures, Percolation Thresholds and Rock Physical Properties, Tectonophysics 279, 23–35.

    Article  Google Scholar 

  • Kachanov, M. (1992), Continuum Model of Medium with Cracks, J. Eng. Mech. Div. Am. Soc. Civ. Eng. 106, 1039–1051.

    Google Scholar 

  • Kachanov, M. (1993), Elastic Solids with Many Cracks and Related Problems, Adv. Appl. Mech. 30, 259–445.

    Google Scholar 

  • Kusunose, K. (1995), Fracture Mechanics of Rocks, J. Phys. Earth 43, 479–504.

    Article  Google Scholar 

  • Jnc Technical Report (1999), Report on Toki Gifu Borehole (in Japanese), JNC Tech. J. 7400, 99–014, 33–41.

    Google Scholar 

  • Jouniaux, L., Masuda, K., Lei, X. L., Nishizawa, O., Kusunose, K., Liqiang, L., and Ma, W. (2001), Comparison of the Microfracture Localization in Granite between Fracturation and Slip of a Pre-existing Macroscopic Healed Joint by Acoustic Emission Measurements, JGR 106, 8687–8698.

    Article  Google Scholar 

  • Lei, X. L., Nishizawa, O., Kusunose, K., and Satoh, T. (1992), Fractal Structure of the Hypocenter Distribution and Focal Mechanism Solution of AE in Two Granites of Different Grain Size, J. Phys. Earth 40, 617–634.

    Article  Google Scholar 

  • Lei, X. L., Satoh, T., Nishizawa, O., Masuda, K., and Kusunose, K. (1998), A Real-time AE Hypocenter Monitoring System for Laboratory Rock Fracture Experiment, Bull. Geol. Surv. Japan 49, 447–457.

    Google Scholar 

  • Lei, X. L., Kusunose, K., Rao, M. V. M. S., Nishizawa, O., and Satoh, T. (2000), Quasi-static Fault Growth and Cracking in Homogeneous Brittle Rock under Triaxial Compression Using Acoustic Emission Monitoring, JGR 105, 6127–6139.

    Article  Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., and Sidorin, A. (1991), Quasi-static Fault Growth and Shear Fracture Energy in Granite, Nature 350, 39–42.

    Article  Google Scholar 

  • Mavko, G., Muker.II, T., and Dvorkin, J., The Rock Physics Handbook (Cambridge University Press, 1998) pp. 329.

    Google Scholar 

  • Moore, D. E. and Lockner, D. A. (1995), The Role of Cracking in Shear Fracture Propagation in Granite, J. Struct. Geol. 17, 95–114.

    Article  Google Scholar 

  • Osborne, F. F. (1935), Rift, Grain, Hardway in Some pre-Cambrian Granites, Québec, Econ. Geol. 30, 540–551.

    Article  Google Scholar 

  • Peng, S. and Johnson, M. A. (1972), Crack Growth and Faulting in Cylindrical Specimens of Chelmsford Granite, Int. J. Rock. Mech. Min. Sci. 9, 37–86.

    Article  Google Scholar 

  • Sano, O. (1981), A Note on the Sources of Acoustic Emissions Associated with Subcritical Crack Growth, Int. J. Rock Mech. Min. Sci. Geomech. Abst. 18, 259–263.

    Article  Google Scholar 

  • Sano, O., Kudo, Y., and Mizuta, Y. (1992), Experimental Determination of Elastic Constants of Oshima Granite, Barre Granite, and Chelmsford Granite, JGR 97, 3367–3379.

    Article  Google Scholar 

  • Sayers, C. M. and Kachanov, M. (1995), Microcrack Induced Elastic Wave Anisotropy of Brittle Rocks, JGR 100, 4149–4156.

    Article  Google Scholar 

  • Simmons, G., Todd, T., and Balridge, W. S. (1975), Toward a Quantitative Relationship between Elastic Properties and Cracks in Low Porosity Rocks, AM. J. Sci. 275, 318–345.

    Google Scholar 

  • Simpson, G., GuÉguen, Y., and Schneider, F. (2001), Permeability Enhancement Due to Microcrack Dilatancy in the Damage Regime, JGR 106, 3999–4016.

    Article  Google Scholar 

  • Vakulenko, A. A. and Kachanov, M. (1971), Continuum Theory of Medium with Cracks, Mechanika Tverd. Tela 6, 159–166.

    Google Scholar 

  • Wong, T.F., David, C., and Zulu, W. (1997), The Transition from Brittle Faulting to Cataclastic Flow in Porous Sandstones: Mechanical Deformation, JGR 102, 3009–3025.

    Article  Google Scholar 

  • Zhu, W. and Wong, T.F. (1997), The Transition from Brittle Faulting to Cataclastic Flow: Permeability Evolution, JGR 102, 3027–3041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Schubnel, A., Nishizawa, O., Masuda, K., Lei, X.J., Xue, Z., Guéguen, Y. (2003). Velocity Measurements and Crack Density Determination During Wet Triaxial Experiments on Oshima and Toki Granites. In: Kümpel, HJ. (eds) Thermo-Hydro-Mechanical Coupling in Fractured Rock. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8083-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8083-1_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-0253-5

  • Online ISBN: 978-3-0348-8083-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics