Skip to main content

Local Solutions to Quasi-linear Weakly Hyperbolic Differential Equations

  • Chapter
  • 376 Accesses

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 145))

Abstract

The purpose of this paper is to investigate weakly hyperbolic equations with degeneracies in the space and time variables. These degeneracies as well as the sharp Levi conditions of C type are formulated by means of certain weight functions. For Cauchy problems to such quasi-linear weakly hyperbolic equations, the following subjects are studied: local existence of solutions in Sobolev spaces and C , a blow-up criterion, domains of dependence, and C regularity. The main tools are the transformation of the higher-order equation to a first-order system, a calculus for pseudodifferential operators with non-smooth symbols, and a generalization of Gronwall’s lemma to differential inequalities with a singular coefficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aleksandrian. Parametrix and propagation of the wave front of a solution to a Cauchy problem for a model hyperbolic equation (in Russian). Izv. Akad. Nauk Arm. SSR, 19(3):219–232, 1984.

    Google Scholar 

  2. S. Alinhac and G. Metivier. Propagation de l’analyticité des solutions de systèmes hyperboliques non-linéaires. Inv. math., 75:189–204, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.F. Atiyah, R. Bott, and L. Gårding. Lacunas for hyperbolic differential operators with constant coefficients. I. Acta Math., 124:109–189, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.F. Atiyah, R. Bott, and L. Gårding. Lacunas for hyperbolic differential operators with constant coefficients. II. Acta Math., 131:145–206, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Coifman and Y. Meyer. Commutateurs d’intégrales singulières et opérateurs multilineaires. Ann. Inst. Fourier (Grenoble), 28(3):177–202, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Colombini, E. Jannelli, and S. Spagnolo. Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa IV, 10:291–312, 1983.

    MathSciNet  MATH  Google Scholar 

  7. F. Colombini and S. Spagnolo. An example of a weakly hyperbolic Cauchy problem not well posed in C . Acta Math., 148:243–253, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. D’Ancona. Well-posedness in C for a weakly hyperbolic second order equation. Rend. Sem. Mat. Univ. Padova,91:65–83, 1994.

    MathSciNet  MATH  Google Scholar 

  9. P.A. Dionne. Sur les problèmes hyperboliques bien posés. J. Analyse Math., 10:1–90, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Dreher and M. Reissig. About the C -well-posedness of fully nonlinear weakly hyperbolic equations of second order with spatial degeneracy. Adv. Diff. Eq.,2(6):1029–1058, 1997.

    MathSciNet  MATH  Google Scholar 

  11. M. Dreher and M. Reissig. Local solutions of fully nonlinear weakly hyperbolic differential equations in Sobolev spaces. Hokk. Math. J., 27(2):337–381, 1998.

    MathSciNet  MATH  Google Scholar 

  12. M. Dreher and M. Reissig. Propagation of mild singularities for semilinear weakly hyperbolic equations. J. Analyse Math., 82:233–266, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Dreher and I. Witt. Edge Sobolev spaces and weakly hyperbolic equations. Ann. mat. pura et appl.,180:451–482, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Gårding. Cauchy’s Problem for Hyperbolic Equations. University Chicago, 1957.

    Google Scholar 

  15. L. Hörmander. The Analysis of Linear Partial Differential Operators. Springer, 1985.

    Google Scholar 

  16. V. Ivrii and V. Petkov. Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well posed. Russian Math. Surveys, 29(5):1–70, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Kajitani and K. Yagdjian. Quasi-linear hyperbolic operators with the characteristics of variable multiplicity. Tsukuba J. Math., 22(1):49–85, 1998.

    MathSciNet  MATH  Google Scholar 

  18. T. Kato and G. Ponce. Commutator estimates and the Euler and Navier—Stokes equations. Comm. Pure Appl. M.,41:891–907, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  19. P.D. Lax. Asymptotic solutions of oscillatory initial value problems. Duke Math. J.,24(4):627–646, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Leray. Hyperbolic Differential Equations. Inst. Adv. Study, Princeton, 1954.

    Google Scholar 

  21. R. Manfrin. Analytic regularity for a class of semi-linear weakly hyperbolic equations of second order. NoDEA,3(3):371–394, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Mizohata. Some remarks on the Cauchy problem. J. Math. Kyoto Univ.,1(1):109–127, 1961.

    MathSciNet  MATH  Google Scholar 

  23. S. Mizohata. The Theory of Partial Differential Equations. Cambridge University Press, 1973.

    MATH  Google Scholar 

  24. A. Nersesyan. On a Cauchy problem for degenerate hyperbolic equations of second order (in Russian). Dokl. Akad. Nauk SSSR, 166(6):1288–1291, 1966.

    MathSciNet  Google Scholar 

  25. O. Oleinik. On the Cauchy problem for weakly hyperbolic equations. Comm. Pure Appl. M.,23:569–586, 1970.

    Article  MathSciNet  Google Scholar 

  26. I.G. Petrovskij. On the Cauchy problem for systems of linear partial differential equations. Bull. Univ. Mosk. Ser. Int. Mat. Mekh., 1(7):1–74, 1938.

    Google Scholar 

  27. M.-Y. Qi. On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line. Acta Math. Sinica, 8:521–529, 1958.

    MathSciNet  Google Scholar 

  28. R. Racke. Lectures on Nonlinear Evolution Equations. Initial Value Problems. Vieweg Verlag, Braunschweig et al., 1992.

    MATH  Google Scholar 

  29. M. Reissig. Weakly hyperbolic equations with time degeneracy in Sobolev spaces. Abstract Appl. Anal., 2(3,4):239–256, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Reissig and K. Yagdjian. Weakly hyperbolic equations with fast oscillating coefficients. Osaka J. Math., 36(2):437–464, 1999.

    MathSciNet  MATH  Google Scholar 

  31. K. Taniguchi and Y. Tozaki. A hyperbolic equation with double characteristics which has a solution with branching singularities. Math. Japonica, 25(3):279–300, 1980.

    MathSciNet  MATH  Google Scholar 

  32. S. Tarama. On the second order hyperbolic equations degenerating in the infinite order. - example -. Math. Japonica, 42(3):523–533, 1995.

    MathSciNet  MATH  Google Scholar 

  33. M.E. Taylor. Pseudodifferential Operators and Nonlinear PDE. Birkhauser, Boston, 1991.

    Book  MATH  Google Scholar 

  34. M.E. Taylor. Partial Differential Equations III. Nonlinear Equations. Springer, 1996.

    Google Scholar 

  35. K. Yagdjian. The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics,Micro-Local Approach, volume 12 of Math. Topics. Akademie Verlag, Berlin, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Dreher, M. (2003). Local Solutions to Quasi-linear Weakly Hyperbolic Differential Equations. In: Albeverio, S., Demuth, M., Schrohe, E., Schulze, BW. (eds) Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations. Operator Theory: Advances and Applications, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8073-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8073-2_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9429-6

  • Online ISBN: 978-3-0348-8073-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics