Skip to main content

Lyapunov Exponents of Nonlinear Stochastic Differential Equations with Jumps

  • Conference paper
Stochastic Inequalities and Applications

Part of the book series: Progress in Probability ((PRPR,volume 56))

Abstract

For a certain kind of nonlinear stochastic differential equations with jumps in ℝd, there exists an invariant probability measure µ on ℝd. A Lyapunov exponent q µ can be represented by the Furstenberg—Has’minskii formula as an integral over ℝd with respect to the ergodic invariant measure, so that the almost sure asymptotic stability depends on the sign of q µ . If the corresponding diffusion is nondegenerate, then µ is unique and has strictly positive invariant density in C(ℝd).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold, Lyapunov exponents of nonlinear stochastic systems, in Nonlinear Stochastic Dynamic Engineering Systems, Springer-Verlag, Berlin, 1988, pp. 181–201

    Google Scholar 

  2. L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  3. P. H. Baxendale, Invariant measures for nonlinear stochastic differential equations, in Lyapunov Exponents, Lecture Notes in Mathematics, 1486, Springer-Verlag, Berlin, 1991, pp. 123–140.

    Google Scholar 

  4. G. L. Blankenship and G. C. Papanicolaou, Stability and control of stochastic systems with wide-band noise disturbances I, SIAM J. Appl. Math., 34 (1978), 437–476.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.

    MATH  Google Scholar 

  6. M. G. Garroni and J. L. Menaldi, Second Order Elliptic Integro-differential Problems, Chapman & Hall/CRC, Boca Raton, 2002.

    Book  MATH  Google Scholar 

  7. M. G. Garroni and J. L. Menaldi, Green Functions for Second Order Parabolic Integro-differential Problems, Longman Scientific & Technical, Essex, 1992.

    MATH  Google Scholar 

  8. A. Grorud and D. Talay, Approximation of Lyapunov exponents of nonlinear stochastic differential equations, SIAM J. Appl. Math., 56 (2) (1996), 627–650.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Z. Has’minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, 1980.

    Book  Google Scholar 

  10. K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z.Wahrscheinlichkeitstheorie. verw. Gebiete, 30 (1974), 235–254; 39 (1977), 81–84.

    Google Scholar 

  11. C. W. Li and G. L. Blankenship, Almost sure stability of linear stochastic systems with Poisson process coefficients, SIAM J. Appl. Math., 46 (1986), 875–911.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. W. Li and Z. Dong, On kernel estimations and invariant measures of stochastic jump-diffusions, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 10 (3) (2003), 373–387.

    MathSciNet  MATH  Google Scholar 

  13. C. W. Li, Z. Dong and R. Situ, Almost sure stability of linear stochastic differential equations with jumps, Probab. Theory Relat. Fields, 123 (2002), 121–155.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. L. Menaldi and M. Robin, Invariant measure for diffusions with jumps, Appl. Math. Optim., 40 (1999), 105–140.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Oseledec, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  16. M. A. Pinsky, Stochastic stability and its Dirichlet problem, Comm. Pure & Appl. Math., 27 (1974), 311–350.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, American Mathematical Society, Providence, 1989.

    MATH  Google Scholar 

  18. I. S. Wee, Stability for multidimensional jump-diffusion processes, Stochastic Processes Appl., 80 (1999), 193–209.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Li, C.W. (2003). Lyapunov Exponents of Nonlinear Stochastic Differential Equations with Jumps. In: Giné, E., Houdré, C., Nualart, D. (eds) Stochastic Inequalities and Applications. Progress in Probability, vol 56. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8069-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8069-5_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9428-9

  • Online ISBN: 978-3-0348-8069-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics