Skip to main content

On the Rate of Convergence of Splitting-up Approximations for SPDEs

  • Conference paper
Stochastic Inequalities and Applications

Part of the book series: Progress in Probability ((PRPR,volume 56))

Abstract

We consider the stochastic PDE

$$du(t,x) = (Lu(t,x) + f(t,x))dt + ({{M}_{k}}u(t) + {{g}_{k}}(t,x)) \circ d{{W}^{k}},$$

where L and M k are second and first order partial differential operators, W is a multi-dimensional Wiener process, and ‘o’ stands for the Stratonovich differential. We approximate the solution by the splitting-up method (method of alternative directions) and we estimate the error in terms of Sobolev’s norm W m p (ℝd), and hence also in the supremum norm. We also show that our rate of convergence estimate is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bensoussan, R. Glowinski and A. Rascanu, Approximation of Zakai equation by the splitting-up method. In: Stochastic Systems and Optimization, Warsaw, 1988. Lect. Notes in Control and Information Sciences 136, 257–265, Springer, 1989.

    Google Scholar 

  2. A. Bensoussan, R. Glowinski, and A. Rascanu, Approximation of some stochastic differential equations by the splitting-up method. Appl. Math. Optim. 25, 81–106.

    Google Scholar 

  3. D. Crisan and T. Lyons, A particle approximation of the solution of the KushnerStratonovitch equation. Probab. Theory Related Fields 115 (1999), 549–578.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Florchinger and F. Le Gland, Time-discretization of the Zakai equation for diffusion processes observed in correlated noise. Stochastics and Stochastics Reports 35 (1991), 233–256.

    MathSciNet  MATH  Google Scholar 

  5. A. Germani and M. Piccioni, Semi-discretization of stochastic partial differential equations on d by a finite element technique. Stochastics 23 (1988), 131–148.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Gottlieb, Strang-type difference schemes for multidimensional problems. SIAM J. Numer. Anal. 9 (1972), 650–661.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Grecksch and P.E. Kloeden, Time-discretized Galerkin approximations of parabolic stochastic PDEs. Bulletin of the Australian Mathematical Society 54 (1996), 79–85.

    Article  MathSciNet  Google Scholar 

  8. I. Gyöngy and N. V. Krylov, On stochastic equations with respect to semimartingales II, Itô formula in Banach spaces. Stochastics 6 (1982), 153–174.

    Article  MATH  Google Scholar 

  9. I. Gyöngy and N. V. KrylovOn splitting-up method and stochastic partial differential equations. The Annals of Probability 31 (2003), 564–591.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ito and B. Rozovskii, Approximation of the Kushner equation for nonlinear filtering. Control Optim. 38 (2000), 893–915.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. V. Krylov, Introduction to the theory of diffusion processes. Amer. Math. Soc., RI, 1995.

    MATH  Google Scholar 

  12. N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations. J. of Soviet Mathematics 16 (1981), 1233–1277.

    Article  MATH  Google Scholar 

  13. N. V. Krylov and B.L. Rozovskii, On the characteristics of degenerate second order parabolic Itô equations. Trudy seminara imeni Petrovskogo 8 (1982), 153–168 (in Russian); English translation in J. Soviet Math. 32, (1986), 336–348.

    MathSciNet  MATH  Google Scholar 

  14. S. V. Lototsky, Problems in statistics of stochastic differential equations. Thesis, University of Southern California, 1996.

    Google Scholar 

  15. S. V. Lototsky, R. Mikulevicius and B. Rozovskii, Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35 (1997), 435–461.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Rozovskii, Stochastic evolution systems. Linear theory and applications to nonlinear filtering. Kluwer, Dordrecht, (1990).

    Google Scholar 

  17. G. Strang, On the construction and comparison of difference schemes. SIAM J. Nu-mer. Anal. 5 (1968), 506–517.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Yoo, An analytic approach to stochastic differential equations and its applications. Ph.D. thesis, University of Minnesota, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Gyöngy, I., Krylov, N. (2003). On the Rate of Convergence of Splitting-up Approximations for SPDEs. In: Giné, E., Houdré, C., Nualart, D. (eds) Stochastic Inequalities and Applications. Progress in Probability, vol 56. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8069-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8069-5_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9428-9

  • Online ISBN: 978-3-0348-8069-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics