Skip to main content

Dimensionality Reduction in Extremal Problems for Moments of Linear Combinations of Vectors with Random Coefficients

  • Conference paper
Stochastic Inequalities and Applications

Part of the book series: Progress in Probability ((PRPR,volume 56))

Abstract

It is shown that

$$\sup \left\{ {E\varphi \left( {{{{\left\| {\sum\limits_{{i = 1}}^{n} {{{\xi }_{i}}{{x}_{i}}} } \right\|}}^{2}}} \right):{{x}_{i}} \in H, \sum\limits_{{i = 1}}^{n} {\parallel {{x}_{i}}{{\parallel }^{2}} = {{B}^{2}}} } \right\}$$

does not depend on dim H ≥ 1, where \((H,\parallel \cdot \parallel )\) is a Hilbert space, φ is any convex function, and ξ 1, …, ξ n are any (real-valued) random variables. An immediate corollary is the following vector extension of the Whittle—Haagerup inequality: let ε 1, …, ε n be independent Rademacher random variables, and let x 1, …, x n be vectors in H; then

$$\begin{array}{*{20}{c}} {E{{{\left\| {\sum\limits_{{i = 1}}^{n} {{{\varepsilon }_{i}}{{x}_{i}}} } \right\|}}^{p}} \leqslant E|\nu {{|}^{p}}{{{\left( {\sum\limits_{{i = 1}}^{n} {\parallel {{x}_{i}}{{\parallel }^{2}}} } \right)}}^{{p/2}}}} & {\forall p \geqslant 2,} \\ \end{array}$$

where v ~ N(0, 1). Dimensionality reduction in the case when all the lengths \(\parallel {{x}_{i}}\parallel\) are fixed is also considered. Open problems are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. G. Bobkov, F. Götze, and C. Houdré, On Gaussian and Bernoulli covariance representations, Bernoulli 7 (2001), 439–451.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. C. Cox and J. H. B. Kemperman, Sharp bounds on the absolute moments of a sum of two i.i.d. random variables, Ann. Probab. 11 (1983), 765–771.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-M. Dufour and M. Hallin, Improved Eaton bounds for linear combinations of bounded random variables, with statistical applications, JASA, 88 (1993), 1026–1033.

    MathSciNet  MATH  Google Scholar 

  4. M. L. Eaton, A note on symmetric Bernoulli random variables, Ann. Math. Statist. 41 (1970), 1223–1226.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. L. Eaton, A probability inequality for linear combinations of bounded random variables, Ann. Statist. 2 (1974), 609–614.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. E. Graversen and G. Peskir, Extremal problems in the maximal inequalities of Khinchine, Math. Proc. Cambridge Philos. Soc., 123, No. 1 (1995), 169–177.

    Article  MathSciNet  Google Scholar 

  7. U. Haagerup, The best constants in the Khinchine inequality, Studia Math., 70 (1982), 231–283.

    MathSciNet  MATH  Google Scholar 

  8. A. Khinchin, Ober dyadische Brüche, Math. Z., 18 (1923), 109–116.

    Article  MathSciNet  Google Scholar 

  9. W. Orlicz, Ober unbedingte Konvergentz in Funktionenräumen I, Studia Math., 4 (1933), 33–37.

    Google Scholar 

  10. R. E. A. C. Paley and A. Zygmund, On some series of functions, (1), Proc. Cambridge Philos. Soc., 26 (1930), 337–357.

    Article  MATH  Google Scholar 

  11. R. R. Phelps, Lectures on Choquet’s Theorem, (1966), Van Nostrand, Princeton.

    MATH  Google Scholar 

  12. I. F. Pinelis, Some extremal probability problems in Hilbert space, Theory Probab. Appl., 29 (1984), 419–420.

    MathSciNet  Google Scholar 

  13. I. Pinelis, Extremal probabilistic problems and Hotelling’s T 2 test under symmetry condition, Preprint (1991).

    Google Scholar 

  14. I. Pinelis, Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition, Ann. Statist., 22 (1994), 357–368.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Pinelis, Optimal tail comparison based on comparison of moments, In: High dimensional probability (Oberwolfach, 1996), Progr. Probab., 43 (1998), Birkhäuser, Basel, 297–314.

    Google Scholar 

  16. I. Pinelis, Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities, In: Advances in stochastic inequalities (Atlanta, GA, 1997), Contemp. Math., 234 (1999), Amer. Math. Soc., Providence, 149–168.

    Google Scholar 

  17. I. Pinelis, On exact maximal Khinchine inequalities, In: High dimensional probability, II (Seattle, WA, 1999), Progr. Probab., 47 (2000), Birkhäuser, Boston, 49–63.

    Google Scholar 

  18. I. Pinelis, Spherically symmetric functions with a convex second derivative and applications to extremal probabilistic problems, Math. Ineq. & Appl. 5 (2002), 7–26.

    MathSciNet  MATH  Google Scholar 

  19. I. Pinelis, L’Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), Article 20, 8 pp. (electronic). http://jipam.vu.edu.au/v3n1/03_01.html

  20. S. A. Utev, Extremal problems in moment inequalities. (Russian) In: Limit theorems of probability theory, 56–75, 175, Trudy Inst. Mat., 5 “Nauka” Sibirsk. Otdel., Novosibirsk, 1985.

    Google Scholar 

  21. S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197–208.

    MathSciNet  MATH  Google Scholar 

  22. P. Whittle, Bounds for the moments of linear and quadratic forms in independent variables, Teor. Verojatnost. i Primenen. 5 (1960), 331–335.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Pinelis, I. (2003). Dimensionality Reduction in Extremal Problems for Moments of Linear Combinations of Vectors with Random Coefficients. In: Giné, E., Houdré, C., Nualart, D. (eds) Stochastic Inequalities and Applications. Progress in Probability, vol 56. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8069-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8069-5_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9428-9

  • Online ISBN: 978-3-0348-8069-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics