Skip to main content

Notes on the Speed of Entropic Convergence in the Central Limit Theorem

  • Conference paper

Part of the book series: Progress in Probability ((PRPR,volume 56))

Abstract

In the context of the study of convergence speeds in the Central Limit Theorem, we investigate some consequences of a general Lipschitz contraction property of probability transition kernels with respect to relative entropy. This Markovian approach will enable us to discuss examples whose behavior is not covered by results recently obtained by several authors. More precisely, let X 0,…, X n be IID real random variables, centered and normalized. It is known that if their law admits a positive spectral gap and a finite relative entropy with respect to ν, the standard Gaussian distribution, then the relative entropy of law of \(({{X}_{0}} + \cdots + {{X}_{n}})/\sqrt {{n + 1}}\) with respect to ν goes to zero at least as \(\mathcal{O}(1/(n + 1))\), for large n ∈ ℕ. The two goals of this paper are: on one hand, for any fixed p ∈ ℕ*, to find conditions insuring an entropic convergence faster than \(\mathcal{O}(1/{{(n + 1)}^{{p/2}}})\) and on the other hand to relax the spectral gap assumption, even at the cost of slower convergence bounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Société Mathématique de France, Paris, 2000. With a preface by D. Bakry and M. Ledoux.

    MATH  Google Scholar 

  2. S. Artstein, K. Ball, F. Barthe, and A. Naor. Entropy growth for sums of independent random variables. Preprint, 2002.

    Google Scholar 

  3. S. Artstein, K. Ball, F. Barthe, and A. Naor. More on entropy production. Preprint in preparation, personal communication, 2002.

    Google Scholar 

  4. D. Bakry. L’hypercontractivité et son utilisation en théorie des semigroupes. In P. Bernard, editor, Lectures on Probability Theory. Ecole d’Eté de Probabilités de Saint-Flour XXII-1992, Lecture Notes in Mathematics 1581. Springer-Verlag, 1994.

    Google Scholar 

  5. K. Ball, F. Barthe, and A. Naor. Entropy jumps in the presence of a spectral gap. Preprint, 2002.

    Google Scholar 

  6. A. R. Barron. Entropy and the central limit theorem. Ann. Probab., 14(1):336–342, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  7. ] S.G.Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1–28,1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. D. Brown. A proof of the Central Limit Theorem motivated by the Cramér-Rao inequality. In Statistics and probability: essays in honor of C. R. Rao,pages 141–148. North-Holland, Amsterdam, 1982.

    Google Scholar 

  9. E. A. Carlen. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1):194–211,1991

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Del Moral, M. Ledoux, and L. Miclo. About supercontraction properties of Markov kernels. Preprint, Publications du Laboratoire de Statistique et Probabilités, no 2001–01, CNRS and Université Paul Sabatier (Toulouse III), France, 2001

    Google Scholar 

  11. P. Del Moral and L. Miclo.On convergence of chains with occupational self-interactions. Preprint, to appear in Royal Society Special Edition on Stochastic Analysis, 2003

    Google Scholar 

  12. W. Feller. An introduction to probability theory and its applications, volume II. Wiley Series in Probability and Mathematical Statistics. John Wiley and Sons, New York, 1966.

    Google Scholar 

  13. L. Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061–1083, 1976.

    Article  MATH  Google Scholar 

  14. O. Johnson and A. Barron. Fisher information inequalities and the Central Limit Theorem. Preprint in submission, Statslab Research Report 2001–17, PDF file downloadable at arXiv:math.PR/0111020 vl 2 Nov 2001, 2003.

    Google Scholar 

  15. M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, pages 120–216. Springer, Berlin, 1999.

    Chapter  Google Scholar 

  16. Ju. V. Linnik. An information-theoretic proof of the central limit theorem with Lindeberg conditions. Theor. Probability Appl., 4:288–299, 1959.

    Article  MathSciNet  Google Scholar 

  17. L. Miclo. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies. In J. Azéma, M. Emery, and M. Yor, editors, Séminaire de Probabilités XXXI, Lecture Notes in Mathematics 1655, pages 136–167. Springer-Verlag, Berlin, 1997.

    Chapter  Google Scholar 

  18. B. Muckenhoupt. Hardy’s inequality with weights. Studia Mathematica, XLIV:31–38, 1972.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Miclo, L. (2003). Notes on the Speed of Entropic Convergence in the Central Limit Theorem. In: Giné, E., Houdré, C., Nualart, D. (eds) Stochastic Inequalities and Applications. Progress in Probability, vol 56. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8069-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8069-5_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9428-9

  • Online ISBN: 978-3-0348-8069-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics