Skip to main content

On the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines

  • Conference paper
Modern Developments in Multivariate Approximation

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 145))

Abstract

This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyharmonic spline interpolants is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Beatson, W. A. Light, S. Billings: Fast solution of the radial basis function interpolation equations: domain decomposition methods, SIAM J. Sci. Comput. 22 (2000), 1717–1740.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Behrens, A. Iske: Grid free adaptive semi-Lagrangian advection using radial basis functions, Computers and Mathematics with Applications, 43:3–5 (2002), 319–327.

    Google Scholar 

  3. J. Behrens, A. Iske, S. Pöhn: Effective node adaption for grid free semiLagrangian advection, Discrete Modelling and Discrete Algorithms in Continuum Mechanics, Th. Sonar, I. Thomas (eds.), Logos Verlag, Berlin, 2001, 110–119.

    Google Scholar 

  4. J. Behrens, A. Iske, M. Käser: Adaptive meshfree method of backward characteristics for nonlinear transport equations, Meshfree Methods for Partial Differential Equations, M. Griebel, M.A. Schweitzer (eds.), Springer, Heidelberg, 2002, 21–36.

    Google Scholar 

  5. M.D. Buhmann: Radial basis functions, Acta Numerica, 2000, 1–38.

    Google Scholar 

  6. P. Deuflhard, A. Hohmann.Numerical Analysis in Modern Scientific Computing: An Introduction. Second edition, Springer, New York, 2003.

    Book  Google Scholar 

  7. J. Duchon:Interpolation des Fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O. Analyse Numeriques 10 (1976), 5–12.

    MathSciNet  Google Scholar 

  8. J. Duchon:Sur l’erreur d’interpolation des fonctions de plusieurs variables par les Dm-splines, R.A.I.R.O. Analyse Numeriques12(1978), 325–334.

    MATH  MathSciNet  Google Scholar 

  9. N. Dyn:Interpolation of scattered data by radial functions,in Topics in MultivariateApproximation,C. K. Chui, L. L. Schumaker, F. I. Utreras (eds.), Academic Press, 1987, 47–61.

    Google Scholar 

  10. N. Dyn:Interpolation and approximation by radial and related functions, inApproximation Theory VI, C. K. Chui, L. L. Schumaker, J. D. Ward (eds.), Academic Press, New York, 1989, 211–234.

    Google Scholar 

  11. T. Gutzmer, A. Iske: Detection of discontinuities in scattered data approximation, Numer. Algorithms16(1997), 155–170.

    MATH  MathSciNet  Google Scholar 

  12. N. J. Higham:Accuracy and Stability of Numerical AlgorithmsSIAM, Philadelphia, 1996.

    Google Scholar 

  13. W. Light, H. Wayne:On power functions and error estimates for radial basis function interpolation, J. Approx. Theory921998, 245–266.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. R. Madych, S. A. Nelson:Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), 77–89.

    MATH  MathSciNet  Google Scholar 

  15. W. R. Madych, S. A. Nelson:Multivariate interpolation and conditionally positive definite functions II, Math. Comp. 54 (1990), 211–230.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Meinguet: Multivariate interpolation at arbitrary points made simple, Z. Angew. Math. Phys.30(1979), 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Meinguet:An intrinsic approach to multivariate spline interpolation at arbitrary points, in PolynomialandSpline Approximations, N B Sahney (ed.), Reidel, Dordrecht, 1979, 163–190.

    Google Scholar 

  18. C. A. Micchelli:Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2, 1986, 11–22.

    MATH  MathSciNet  Google Scholar 

  19. F. J. Narcowich, J. D. Ward:Norm estimates for the inverses of a general class of scattered-data radial function interpolation matrices, J. Approx. Theory691992, 84–109.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. J. D. Powell:The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math.681994, 107–128.

    MATH  Google Scholar 

  21. R. Schaback: Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp.68(1999), 201–216.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Schaback:Stability of radial basis function interpolants, in Approximation Theory X: Wavelets,Splines,and Applications, C.K. Chui, L.L. Schumaker, J. Stöckler (eds.), Vanderbilt Univ. Press, Nashville, 2002, 433–440.

    Google Scholar 

  23. R. Schaback, H. Wendland:Characterization and construction of radial basis functions, inMultivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), Cambridge University Press, Cambridge, 2001, 1–24.

    Chapter  Google Scholar 

  24. R. Schaback, H. Wendland: Inverse and saturation theorems for radial basis function interpolation, Math. Comp. 71 (2002), 669–681.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Wu, R. Schaback: Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), 13–27.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Iske, A. (2003). On the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8067-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8067-1_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9427-2

  • Online ISBN: 978-3-0348-8067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics